#29 On the referendum & #4c on Expertise: On the ARPA/PARC ‘Dream Machine’, science funding, high performance, and UK national strategy

Post-Brexit Britain should be considering the intersection of 1) ARPA/PARC-style science research and ‘systems management’ for managing complex projects with 2) the reform of government institutions so that high performance teams — with different education/training (‘Tetlock processes’) and tools (including data science and visualisations of interactive models of complex systems) — can make ‘better decisions in a complex world’.  

This paper examines the ARPA/PARC vision for computing and the nature of the two organisations. In the 1960s visionaries such as Joseph Licklider, Robert Taylor and Doug Engelbart developed a vision of networked interactive computing that provided the foundation not just for new technologies but for whole new industries. Licklider, Sutherland, Taylor et al provided a model (ARPA) for how science funding can work. Taylor provided a model (PARC) of how to manage a team of extremely talented people who turned a profound vision into reality. The original motivation for the vision of networked interactive computing was to help humans make good decisions in a complex world.

This story suggests ideas about how to make big improvements in the world with very few resources if they are structured right. From a British perspective it also suggests ideas about what post-Brexit Britain should do to help itself and the world and how it might be possible to force some sort of ‘phase transition’ on the rotten Westminster/Whitehall system.

For the PDF of the paper click HERE. Please correct errors with page numbers below. I will update it after feedback.

Further Reading

The Dream Machine.

Dealers of Lightning.

‘Sketchpad: A man-machine graphical communication system’, Ivan Sutherland 1963.

Oral history interview with Sutherland, head of ARPA’s IPTO division 1963-5.

This link has these seminal papers:

  • Man-Computer Symbiosis, Licklider (1960)
  • The computer as a communications device, Licklider & Taylor (1968)

Watch Alan Kay explain how to invent the future to YCombinator classes HERE and HERE.  

HERE for Kay quotes from emails with Bret Victor.

HERE for Kay’s paper on PARC, The Power of the Context.

Kay’s Early History of Smalltalk.

HERE for a conversation between Kay and Engelbart.

Alan Kay’s tribute to Ted Nelson at “Intertwingled” Fest (an Alto using Smalltalk).

Personal Distributed Computing: The Alto and Ethernet Software1, Butler Lampson. 

You and Your Research, Richard Hamming.

AI nationalism, essay by Ian Hogarth. This concerns implications of AI for geopolitics.

Drones go to work, Chris Anderson (one of the pioneers of commercial drones). This explains the economics of the drone industry.

Meditations on Moloch, Scott Alexander. This is an extremely good essay in general about deep problems with our institutions.

Intelligence Explosion Microeconomics, Yudkowsky.

Autonomous technology and the greater human good. Omohundro.

Can intelligence explode? Hutter.

For the issue of IQ, genetics and the distribution of talent (and much much more), cf. Steve Hsu’s brilliant blog.

Bret Victor.

Michael Nielsen.

For some pre-history on computers, cf. The birth of computational thinking (some of the history of computing devices before the Turing/von Neumann revolution) and The crisis of mathematical paradoxes, Gödel, Turing and the basis of computing (some of the history of ideas about mathematical foundations and logic such as the famous papers by Gödel and Turing in the 1930s)

Part I of this series of blogs is HERE.

Part II on the emergence of ‘systems management’, how George Mueller used it to put man on the moon, and a checklist of how successful management of complex projects is systematically different to how Whitehall works is HERE.

Effective action #4a: ‘Expertise’ from fighting and physics to economics, politics and government

‘We learn most when we have the most to lose.’ Michael Nielsen, author of the brilliant book Reinventing Discovery.

‘There isn’t one novel thought in all of how Berkshire [Hathaway] is run. It’s all about … exploiting unrecognized simplicities…Warren [Buffett] and I aren’t prodigies.We can’t play chess blindfolded or be concert pianists. But the results are prodigious, because we have a temperamental advantage that more than compensates for a lack of IQ points.’ Charlie Munger,Warren Buffett’s partner.

I’m going to do a series of blogs on the differences between fields dominated by real expertise (like fighting and physics) and fields dominated by bogus expertise (like macroeconomic forecasting, politics/punditry, active fund management).

Fundamental to real expertise is 1) whether the informational structure of the environment is sufficiently regular that it’s possible to make good predictions and 2) does it allow high quality feedback and therefore error-correction. Physics and fighting: Yes. Predicting recessions, forex trading and politics: not so much. I’ll look at studies comparing expert performance in different fields and the superior performance of relatively very simple models over human experts in many fields.

This is useful background to consider a question I spend a lot of time thinking about: how to integrate a) ancient insights and modern case studies about high performance with b) new technology and tools in order to improve the quality of individual, team, and institutional decision-making in politics and government.

I think that fixing the deepest problems of politics and government requires a more general and abstract approach to principles of effective action than is usually considered in political discussion and such an approach could see solutions to specific problems almost magically appear, just as you see happen in a very small number of organisations — e.g Mueller’s Apollo program (man on the moon), PARC (interactive computing), Berkshire Hathaway (most successful investors in history), all of which have delivered what seems almost magical performance because they embody a few simple, powerful, but largely unrecognised principles. There is no ‘solution’ to the fundamental human problem of decision-making amid extreme complexity and uncertainty but we know a) there are ways to do things much better and b) governments mostly ignore them, so there is extremely valuable low-hanging fruit if, but it’s a big if, we can partially overcome the huge meta-problem that governments tend to resist the institutional changes needed to become a learning system.

This blog presents some basic background ideas and examples…

*

Extreme sports: fast feedback = real expertise 

In the 1980s and early 1990s, there was an interesting case study in how useful new knowledge jumped from a tiny isolated group to the general population with big effects on performance in a community. Expertise in Brazilian jiu-jitsu was taken from Brazil to southern California by the Gracie family. There were many sceptics but they vanished rapidly because the Gracies were empiricists. They issued ‘the Gracie challenge’.

All sorts of tough guys, trained in all sorts of ways, were invited to come to their garage/academy in Los Angeles to fight one of the Gracies or their trainees. Very quickly it became obvious that the Gracie training system was revolutionary and they were real experts because they always won. There was very fast and clear feedback on predictions. Gracie jiujitsu quickly jumped from an LA garage to TV. At the televised UFC 1 event in 1993 Royce Gracie defeated everyone and a multi-billion dollar business was born.

People could see how training in this new skill could transform performance. Unarmed combat changed across the world. Disciplines other than jiu jitsu have had to make a choice: either isolate themselves and not compete with jiu jitsu or learn from it. If interested watch the first twenty minutes of this documentary (via professor Steve Hsu, physicist, amateur jiu jitsu practitioner, and predictive genomics expert).

Video: Jiu Jitsu comes to Southern California

Royce Gracie, UFC 1 1993 

Screenshot 2018-05-22 10.41.20

 

Flow, deep in the zone

Another field where there is clear expertise is extreme skiing and snowboarding. One of the leading pioneers, Jeremy Jones, describes how he rides ‘spines’ hurtling down the side of mountains:

‘The snow is so deep you need to use your arms and chest to swim, and your legs to ride. They also collapse underfoot, so you’re riding mini-avalanches and dodging slough slides. Spines have blind rollovers, so you can’t see below. Or to the side. Every time the midline is crossed, it’s a leap into the abyss. Plus, there’s no way to stop and every move is amplified by complicated forces. A tiny hop can easily become a twenty-foot ollie. It’s the absolute edge of chaos. But the easiest way to live in the moment is to put yourself in a situation where there’s no other choice. Spines demand that, they hurl you deep into the zone.’ Emphasis added.

Video: Snowboarder Jeremy Jones

What Jones calls ‘the zone’ is also known as ‘flow‘ — a particular mental state, triggered by environmental cues, that brings greatly enhanced performance. It is the object of study in extreme sports and by the military and intelligence services: for example DARPA is researching whether stimulating the brain can trigger ‘flow’ in snipers.

Flow — or control on ‘the edge of chaos’ where ‘every move is amplified by complicated forces’ — comes from training in which people learn from very rapid feedback between predictions and reality. In ‘flow’, brains very rapidly and accurately process environmental signals and generate hypothetical scenarios/predictions and possible solutions based on experience and training. Jones’s performance is inseparable from developing this fingertip feeling. Similarly, an expert fireman feels the glow of heat on his face in a slightly odd way and runs out of the building just before it collapses without consciously knowing why he did it: his intuition has been trained to learn from feedback and make predictions. Experts operating in ‘flow’ do not follow what is sometimes called the ‘rational model’ of decision-making in which they sequentially interrogate different options — they pattern-match solutions extremely quickly based on experience and intuition.

The video below shows extreme expertise in a state of ‘flow’ with feedback on predictions within milliseconds. This legendary ride is so famous not because of the size of the wave but its odd, and dangerous, nature. If you watch carefully you will see what a true expert in ‘flow’ can do: after committing to the wave Hamilton suddenly realises that unless he reaches back with the opposite hand to normal and drags it against the wall of water behind him, he will get sucked up the wave and might die. (This wave had killed someone a few weeks earlier.) Years of practice and feedback honed the intuition that, when faced with a very dangerous and fast moving problem, almost instantly (few seconds maximum) pattern-matched an innovative solution.

Video: surfer Laird Hamilton in one of the greatest ever rides

 

The faster the feedback cycle, the more likely you are to develop a qualitative improvement in speed that destroys an opponent’s decision-making cycle. If you can reorient yourself faster to the ever-changing environment than your opponent, then you operate inside their ‘OODA loop’ (Observe-Orient-Decide-Act) and the opponent’s performance can quickly degrade and collapse.

This lesson is vital in politics. You can read it in Sun Tzu and see it with Alexander the Great. Everybody can read such lessons and most people will nod along. But it is very hard to apply because most political/government organisations are programmed by their incentives to prioritise seniority, process and prestige over high performance and this slows and degrades decisions. Most organisations don’t do it. Further, political organisations tend to make too slowly those decisions that should be fast and too quickly those decisions that should be slow — they are simultaneously both too sluggish and too impetuous, which closes off favourable branching histories of the future.

Video: Boxer Floyd Mayweather, best fighter of his generation and one of the quickest and best defensive fighters ever

The most extreme example in extreme sports is probably ‘free soloing’ — climbing mountains without ropes where one mistake means instant death. If you want to see an example of genuine expertise and the value of fast feedback then watch Alex Honnold.

Video: Alex Honnold ‘free solos’ El Sendero Luminoso (terrifying)

Music is similar to sport. There is very fast feedback, learning, and a clear hierarchy of expertise.

Video: Glenn Gould playing the Goldberg Variations (slow version)

Our culture treats expertise/high performance in fields like sport and music very differently to maths/science education and politics/government. As Alan Kay observes, music and sport expertise is embedded in the broader culture. Millions of children spend large amounts of time practising hard skills. Attacks on them as ‘elitist’ don’t get the same damaging purchase as in other fields and the public don’t mind about elite selection for sports teams or orchestras.

‘Two ideas about this are that a) these [sport/music] are activities in which the basic act can be seen clearly from the first, and b) are already part of the larger culture. There are levels that can be seen to be inclusive starting with modest skills. I think a very large problem for the learning of both science and math is just how invisible are their processes, especially in schools.’ Kay 

When it comes to maths and science education, the powers-that-be (in America and Britain) try very hard and mostly successfully to ignore the question: where are critical thresholds for valuable skills that develop true expertise. This is even more a problem with the concept of ‘thinking rationally’, for which some basic logic, probability, and understanding of scientific reasoning is a foundation. Discussion of politics and government almost totally ignores the concept of training people to update their opinions in response to new evidence — i.e adapt to feedback. The ‘rationalist community’ — people like Scott Alexander who wrote this fantastic essay (Moloch) about why so much goes wrong, or the recent essays by Eliezer Yudkowsky — are ignored at the apex of power. I will return to the subject of how to create new education and training programmes for elite decision-makers. It is a good time for UK universities to innovate in this field, as places like Stanford are already doing. Instead of training people like Cameron and Adonis to bluff with PPE, we need courses that combine rational thinking with practical training in managing complex projects. We need people who practice really hard making predictions in ways we know work well (cf. Tetlock) then update in response to errors.

*

A more general/abstract approach to reforming government

If we want to get much higher performance in government, then we need to think rigorously about: the selection of people and teams, their education and training, their tools, and the institutions (incentives and so on) that surround and shape them.

Almost all analysis of politics and government considers relatively surface phenomena. For example, the media briefly blasts headlines about Carillion’s collapse or our comical aircraft carriers but there is almost no consideration of the deep reasons for such failures and therefore nothing tends to happen — the media caravan moves on and the officials and ministers keep failing in the same ways. This is why, for example, the predicted abject failure of the traditional Westminster machinery to cope with Brexit negotiations has not led to self-examination and learning but, instead, mostly to a visible determination across both sides of the Brexit divide in SW1 to double down on long-held delusions.

Progress requires attacking the ‘system of systems’ problem at the right ‘level’. Attacking the problems directly — let’s improve policy X and Y, let’s swap ‘incompetent’ A for ‘competent’ B — cannot touch the core problems, particularly the hardest meta-problem that government systems bitterly fight improvement. Solving the explicit surface problems of politics and government is best approached by a more general focus on applying abstract principles of effective action. We need to surround relatively specific problems with a more general approach. Attack at the right level will see specific solutions automatically ‘pop out’ of the system. One of the most powerful simplicities in all conflict (almost always unrecognised) is: ‘winning without fighting is the highest form of war’. If we approach the problem of government performance at the right level of generality then we have a chance to solve specific problems ‘without fighting’ — or, rather, without fighting nearly so much and the fighting will be more fruitful.

This is not a theoretical argument. If you look carefully at ancient texts and modern case studies, you see that applying a small number of very simple, powerful, but largely unrecognised principles (that are very hard for organisations to operationalise) can produce extremely surprising results.

We have no alternative to trying. Without fundamental changes to government, we will lose our hourly game of Russian roulette with technological progress.

‘The combination of physics and politics could render the surface of the earth uninhabitable… [T]he ever accelerating progress of technology and changes in the mode of human life … gives the appearance of approaching some essential singularity in the history of the race beyond which human affairs, as we know them, could not continue.’ John von Neumann

As Steve Hsu says: Pessimism of the Intellect, Optimism of the Will.


Ps. There is an interesting connection between the nature of counterfactual reasoning in the fast-moving world of extreme sports and the theoretical paper I posted yesterday on state-of-the-art AI. The human ability to interrogate stored representations of their environment with counter-factual questions is fundamental to the nature of intelligence and developing expertise in physical and mental skills. It is, for now, absent in machines.

Complexity and Prediction Part V: The crisis of mathematical paradoxes, Gödel, Turing and the basis of computing

Before the referendum I started a series of blogs and notes exploring the themes of complexity and prediction. This was part of a project with two main aims: first, to sketch a new approach to education and training in general but particularly for those who go on to make important decisions in political institutions and, second, to suggest a new approach to political priorities in which progress with education and science becomes a central focus for the British state. The two are entangled: progress with each will hopefully encourage progress with the other.

I was working on this paper when I suddenly got sidetracked by the referendum and have just looked at it again for the first time in about two years.

The paper concerns a fascinating episode in the history of ideas that saw the most esoteric and unpractical field, mathematical logic, spawn a revolutionary technology, the modern computer. NB. a great lesson to science funders: it’s a great mistake to cut funding on theory and assume that you’ll get more bang for buck from ‘applications’.

Apart from its inherent fascination, knowing something of the history is helpful for anybody interested in the state-of-the-art in predicting complex systems which involves the intersection between different fields including: maths, computer science, economics, cognitive science, and artificial intelligence. The books on it are either technical, and therefore inaccessible to ~100% of the population, or non-chronological so it is impossible for someone like me to get a clear picture of how the story unfolded.

Further, there are few if any very deep ideas in maths or science that are so misunderstood and abused as Gödel’s results. As Alan Sokal, author of the brilliant hoax exposing post-modernist academics, said, ‘Gödel’s theorem is an inexhaustible source of intellectual abuses.’ I have tried to make clear some of these using the best book available by Franzen, which explains why almost everything you read about it is wrong. If even Stephen Hawking can cock it up, the rest of us should be particularly careful.

I sketched these notes as I tried to pull together the story from many different books. I hope they are useful particularly for some 15-25 year-olds who like chronological accounts about ideas. I tried to put the notes together in the way that I wish I had been able to read at that age. I tried hard to eliminate errors but they are inevitable given how far I am from being competent to write about such things. I wish someone who is competent would do it properly. It would take time I don’t now have to go through and finish it the way I originally intended to so I will just post it as it was 2 years ago when I got calls saying ‘about this referendum…’

The only change I think I have made since May 2015 is to shove in some notes from a great essay later that year by the man who wrote the textbook on quantum computers, Michael Nielsen, which would be useful to read as an introduction or instead, HERE.

As always on this blog there is not a single original thought and any value comes from the time I have spent condensing the work of others to save you the time. Please leave corrections in comments.

The PDF of the paper is HERE (amended since first publication to correct an error, see Comments).

 

‘Gödel’s achievement in modern logic is singular and monumental – indeed it is more than a monument, it is a land mark which will remain visible far in space and time.’  John von Neumann.

‘Einstein had often told me that in the late years of his life he has continually sought Gödel’s company in order to have discussions with him. Once he said to me that his own work no longer meant much, that he came to the Institute merely in order to have the privilege of walking home with Gödel.’ Oskar Morgenstern (co-author with von Neumann of the first major work on Game Theory).

‘The world is rational’, Kurt Gödel.

Specialist maths schools – some facts

The news reports that the Government will try to promote more ‘specialist maths schools’ similar to the King’s College and Exeter schools.

The idea for these schools came when I read about Perelman, the Russian mathematician who in 2003 suddenly posted on arXiv a solution to the Poincaré Conjecture, one of the most important open problems in mathematics. Perelman went to one of the famous Russian specialist maths schools that were set up by one of the most important mathematicians of the 20th Century, Kolmogorov.

I thought – a) given the fall in standards in maths and physics because of the corruption of the curriculum and exams started by the Tories and continued by Blair, b) the way in which proper teaching of advanced maths and physics is increasingly limited to a tiny number of schools many of which are private, and c) the huge gains for our civilisation from the proper education of the unusual small fraction of children who are very gifted in maths and physics, why not try to set up something similar.

Gove’s team therefore pushed the idea through the DfE. Dean Acheson, US Secretary of State, said, ‘I have long been the advocate of the heretical view that, whatever political scientists might say, policy in this country is made, as often as not, by the necessity of finding something to say for an important figure committed to speak without a prearranged subject.’ This is quite true (it also explains a lot about how Monnet created the ECSC and EEC). Many things that the Gove team did relied on this. We prepared the maths school idea and waited our chance. Sure enough, the word came through from Downing Street – ‘the Chancellor needs an announcement for the Budget, something on science’. We gave them this, he announced it, and bureaucratic resistance was largely broken.

If interested in some details, then look at pages 75ff of my 2013 essay for useful links. Other countries have successfully pursued similar ideas, including France for a couple of centuries and Singapore recently.

One of the interesting aspects of trying to get them going was the way in which a) the official ‘education world’ loathed not just the idea but also the idea about the idea – they hated thinking about ‘very high ability’ and specialist teaching; b) when I visited maths departments they all knew about these schools because university departments in the West employ a large number of people who were educated in these schools but they all said ‘we can’t help you with this even though it’s a good idea because we’d be killed politically for supporting “elitism” [fingers doing quote marks in the air], good luck I hope you succeed but we’ll probably attack you on the record.’ They mostly did.

The only reason why the King’s project happened is because Alison Wolf made it a personal crusade to defeat all the entropic forces that elsewhere killed the idea (with the exception of Exeter). Without her it would have had no chance. I found few equivalents elsewhere and where I did they were smashed by their VCs.

A few points…

1) Kolmogorov-type schools are a particular thing. They undoubtedly work. But they are aimed at a small fraction of the population. Given what the products of these schools go on to contribute to human civilisation they are extraordinarily cheap. They are also often a refuge for children who have a terrible time in normal schools. If they were as different to normal kids in a negative sense as they are in a positive sense then there would be no argument about whether they have ‘special needs’.

2) Don’t believe the rubbish in things like Gladwell’s book about maths and IQ. There is now very good data on this particularly in the form of the unprecedented SMPY multi-decade study. Even a short crude test at 11-13 gives very good predictions of who is likely to be very good at maths/physics. Further there is a strong correlation between performance at the top 1% / 1:1,000 / 1:10,000 level and many outcomes in later life such as getting a doctorate, a patent, writing a paper in Science and Nature, high income, health etc. The education world has been ~100% committed to rejecting the science of this subject though this resistance is cracking.

This chart shows the SMPY results (maths ability at 13) for the top 1% of maths ability broken down into quartiles 1-4: the top quartile of the top 1% clearly outperforms viz tenure, publication and patent rates.  

screenshot-2017-01-23-11-53-01

3) The arguments for Kolmogorov schools do not translate to arguments for selection in general – ie. they are specific to the subject. It is the structure of maths and the nature of the brain that allows very young people to make rapid progress. These features are not there for English, history and so on. I am not wading into the grammar school argument on either side – I am just pointing out a fact that the arguments for such maths schools are clear but should not be confused with the wider arguments over selection that involve complicated trade-offs. People on both sides of the grammar debate should, if rational, be able to support this policy.

4) These schools are not ‘maths hot houses’. Kolmogorov took the children to see  Shakespeare plays, music and so on. It is important to note that teaching English and other subjects is normal – other than you are obviously dealing with unusually bright children. If these children are not in specialist schools, then the solution is a) specialist maths teaching (including help from university-level mathematicians) and b) keeping other aspects of their education normal. Arguably the greatest mathematician in the world, Terry Tao, had wise parents and enjoyed this combination. So it is of course possible to educate such children without specialist schools but the risks are higher that either parents or teachers cock it up.

5) Extended wisely across Britain they could have big benefits not just for those children and elite universities but they could also play an important role in raising standards generally in their area by being a focus for high quality empirical training. One of the worst aspects of the education world is the combination of low quality training and resistance to experiments. This has improved since the Gove reforms but the world of education research continues to be dominated by what Feynman called ‘cargo cult science’.

6) We also worked with a physicist at Cambridge, Professor Mark Warner, to set up a project to improve the quality of 6th form physics. This project has been a great success thanks to his extraordinary efforts and the enthusiasm of young Cambridge physicists. Thousands of questions have been answered on their online platform from many schools. This project gives kids the chance to learn proper problem solving – that is the core skill that the corruption of the exam system has devalued and increasingly pushed into a ghetto of of private education. Needless to say the education world also was hostile to this project. Anything that suggests that we can do much much better is generally hated by all elements of the bureaucracy, including even elements such as the Institute of Physics that supposedly exist to support exactly this. A handful of officials helped us push through projects like this and of course most of them have since left Whitehall in disgust, thus does the system protect itself against improvement while promoting the worst people.

7) This idea connects to a broader idea. Kids anywhere in the state system should be able to apply some form of voucher to buy high quality advanced teaching from outside their school for a wide range of serious subjects from music to physics.

8) One of the few projects that the Gove team tried and failed to get going was to break the grip of GCSEs on state schools (Cameron sided with Clegg and although we cheated a huge amount through the system we hit a wall on this project). It is extremely wasteful for the system and boring for many children for them to be focused on existing exams that do not develop serious skills. Maths already has the STEP paper. There should be equivalents in other subjects at age 16. There is nothing that the bureaucracy will fight harder than this and it will probably only happen if excellent private schools decide to do it themselves and political pressure then forces the Government to allow state schools to do them.

Any journalists who want to speak to people about this should try to speak to Dan Abramson (the head of the King’s school), Alison Wolf, or Alexander Borovik (a mathematician at Manchester University who attended one of these schools in Russia).

It is hopeful that No10 is backing this idea but of course they will face determined resistance. It will only happen if at least one special adviser in the DfE makes it a priority and has the support of No10 so officials know they might as well fight about other things…


This is the most interesting comment probably ever left on this blog and it is much more interesting than the blog itself so I have copied it below. It is made by Borovik, mentioned above, who attended one of these schools in Russia and knows many who attended similar…

‘There is one more aspect of (high level) selective specialist mathematics education that is unknown outside the professional community of mathematicians.

I am not an expert on “gifted and talented” education. On the other hand, I spent my life surrounded by people who got exclusive academically selective education in mathematics and physics, whether it was in the Lavrentiev School in Siberia, or Lycée Louis-le-Grand in Paris, or Fazekas in Budapest, or Galatasaray Lisesi (aka Lycée de Galatasaray) in Istanbul — the list can be continued.

The schools have nothing in common, with the exception of being unique, each one in its own way.

I had research collaborators and co-authors from each of the schools that Ilisted above. Why was it so easy for us to find a common language?

Well, the explanation can be found in the words of Stanislas Dehaene, the leading researcher of neurophysiology of mathematical thinking:

“We have to do mathematics using the brain which evolved 30 000 years ago for survival in the African savanna.”

In humans, the speed of totally controlled mental operations is at most 16 bits per second. Standard school maths education trains children to work at that speed.

The visual processing module in the brain crunches 10,000,000,000 bits per second.

I offer a simple thought experiment to the readers who have some knowledge of school level geometry.

Imagine that you are given a triangle; mentally rotate it about the longest side. What is the resulting solid of revolution? Describe it. And then try to reflect: where the answer came from?

The best kept secret of mathematics: it is done by subconsciousness.

Mathematics is a language for communication with subconsciousness.

There are four conversants in a conversation between two mathematicians: two people and two their “inner”, “intuitive” brains.

When mathematicians talk about mathematics face-to-face, they
* frequently use language which is very fluid and informal;
* improvised on the spot;
* includes pauses (for a lay observer—very strange and awkwardly timed) for absorbtion of thought;
* has almost nothing in common with standardised mathematics “in print”.

Mathematician is trying to convey a message from his “intuitive brain” directly to his colleagues’ “intuitive brain”.

Alumni of high level specialist mathematics schools are “birds of feather” because they have been initiated into this mode of communication at the most susceptible age, as teenagers, at the peak of intensity of their socialisation / shaping group identity stream of self-actualisation.

In that aspect, mathematics is not much different from arts. Part of the skills that children get in music schools, acting schools, dancing school, and art schools is the ability to talk about music, acting, dancing, art with intuitive, subconscious parts of their minds — and with their peers, in a secret language which is not recognised (and perhaps not even registered) by uninitiated.

However, specialist mathematics schools form a continuous spectrum from just ordinary, with standard syllabus, but good schools with good maths teachers to the likes of Louis-le-Grand and Fazekas. My comments apply mostly to the top end of the spectrum. I have a feeling that the Green Paper is less ambitious and does not call for setting up mathematics boarding schools using Chetham’s School of Music as a model. However, middle tier maths school could also be very useful — if they are set up with realistic expectations, properly supported, and have strong connections with universities.’

A Borovik

 

 

Please help: how to make a big improvement in the alignment of political parties’ incentives with the public interest?

I am interested in these questions:

1) What incentives drive good/bad behaviour for UK political parties?

2) How could they be changed (legal and non-legal) to align interests of existing parties better with the public interest?

3) If one were setting up a new party from scratch what principles could be established in order to align the party’s interests with the public interest much more effectively than is now the case anywhere in the world, and how could one attract candidates very different to those who now dominate Parliament (cleverer, quantitative problem-solving skills, experience in managing complex organisations etc)?

4) Is there a good case for banning political parties (as sometimes was attempted in ancient Greece), how to do it, what would replace them, why would this be better etc (I assume this is a bad and/or impractical idea but it’s worth asking why)?

5) In what ways do existing or plausible technologies affect these old questions?

What are the best things written on these problems?

What are the best examples around the world of how people have made big improvements?

Assume that financial resources are effectively unlimited for the entity trying to make these changes, let me worry about things like ‘would the public buy it’ etc – focus on policy not communication/PR advice.

The more specific the better: an ideal bit of help would be detailed draft legislation. I don’t expect anybody to produce this, but just to show what I mean…

The overall problem is: how to make government performance dramatically, quantifiably, and sustainably better?

Please leave ideas in comments or email dmc2.cummings@gmail.com

Thanks

D

Unrecognised simplicities of effective action #1: expertise and a quadrillion dollar business

‘The combination of physics and politics could render the surface of the earth uninhabitable.’ John von Neumann.

Introduction

This series of blogs considers:

  • the difference between fields with genuine expertise, such as fighting and physics, and fields dominated by bogus expertise, such as politics and economic forecasting;
  • the big big problem we face – the world is ‘undersized and underorganised’ because of a collision between four forces: 1) our technological civilisation is inherently fragile and vulnerable to shocks, 2) the knowledge it generates is inherently dangerous, 3) our evolved instincts predispose us to aggression and misunderstanding, and 4) there is a profound mismatch between the scale and speed of destruction our knowledge can cause and the quality of individual and institutional decision-making in ‘mission critical’ institutions – our institutions are similar to those that failed so spectacularly in summer 1914 yet they face crises moving at least ~103 times faster and involving ~106 times more destructive power able to kill ~1010 people;
  • what classic texts and case studies suggest about the unrecognised simplicities of effective action to improve the selection, education, training, and management of vital decision-makers to improve dramatically, reliably, and quantifiably the quality of individual and institutional decisions (particularly 1) the ability to make accurate predictions and b) the quality of feedback);
  • how we can change incentives to aim a much bigger fraction of the most able people at the most important problems;
  • what tools and technologies can help decision-makers cope with complexity.

[I’ve tweaked a couple of things in response to this blog by physicist Steve Hsu.]

*

Summary of the big big problem

The investor Peter Thiel (founder of PayPal and Palantir, early investor in Facebook) asks people in job interviews: what billion (109) dollar business is nobody building? The most successful investor in world history, Warren Buffett, illustrated what a quadrillion (1015) dollar business might look like in his 50th anniversary letter to Berkshire Hathaway investors.

‘There is, however, one clear, present and enduring danger to Berkshire against which Charlie and I are powerless. That threat to Berkshire is also the major threat our citizenry faces: a “successful” … cyber, biological, nuclear or chemical attack on the United States… The probability of such mass destruction in any given year is likely very small… Nevertheless, what’s a small probability in a short period approaches certainty in the longer run. (If there is only one chance in thirty of an event occurring in a given year, the likelihood of it occurring at least once in a century is 96.6%.) The added bad news is that there will forever be people and organizations and perhaps even nations that would like to inflict maximum damage on our country. Their means of doing so have increased exponentially during my lifetime. “Innovation” has its dark side.

‘There is no way for American corporations or their investors to shed this risk. If an event occurs in the U.S. that leads to mass devastation, the value of all equity investments will almost certainly be decimated.

‘No one knows what “the day after” will look like. I think, however, that Einstein’s 1949 appraisal remains apt: “I know not with what weapons World War III will be fought, but World War IV will be fought with sticks and stones.”’

Politics is profoundly nonlinear. (I have written a series of blogs about complexity and prediction HERE which are useful background for those interested.) Changing the course of European history via the referendum only involved about 10 crucial people controlling ~£107  while its effects over ten years could be on the scale of ~108 – 10people and ~£1012: like many episodes in history the resources put into it are extremely nonlinear in relation to the potential branching histories it creates. Errors dealing with Germany in 1914 and 1939 were costly on the scale of ~100,000,000 (108) lives. If we carry on with normal human history – that is, international relations defined as out-groups competing violently – and combine this with modern technology then it is extremely likely that we will have a disaster on the scale of billions (109) or even all humans (~1010). The ultimate disaster would kill about 100 times more people than our failure with Germany. Our destructive power is already much more than 100 times greater than it was then: nuclear weapons increased destructiveness by roughly a factor of a million.

Even if we dodge this particular bullet there are many others lurking. New genetic engineering techniques such as CRISPR allow radical possibilities for re-engineering organisms including humans in ways thought of as science fiction only a decade ago. We will soon be able to remake human nature itself. CRISPR-enabled ‘gene drives’ enable us to make changes to the germ-line of organisms permanent such that changes spread through the entire wild population, including making species extinct on demand. Unlike nuclear weapons such technologies are not complex, expensive, and able to be kept secret for a long time. The world’s leading experts predict that people will be making them cheaply at home soon – perhaps they already are. These developments have been driven by exponential progress much faster than Moore’s Law reducing the cost of DNA sequencing per genome from ~$108 to ~$10in roughly 15 years.

screenshot-2017-01-16-12-24-13

It is already practically possible to deploy a cheap, autonomous, and anonymous drone with facial-recognition software and a one gram shaped-charge to identify a relevant face and blow it up. Military logic is driving autonomy. For example, 1) the explosion in the volume of drone surveillance video (from 71 hours in 2004 to 300,000 hours in 2011 to millions of hours now) requires automated analysis, and 2) jamming and spoofing of drones strongly incentivise a push for autonomy. It is unlikely that promises to ‘keep humans in the loop’ will be kept. It is likely that state and non-state actors will deploy low-cost drone swarms using machine learning to automate the ‘find-fix-finish’ cycle now controlled by humans. (See HERE for a video just released for one such program and imagine the capability when they carry their own communication and logistics network with them.)

In the medium-term, many billions are being spent on finding the secrets of general intelligence. We know this secret is encoded somewhere in the roughly 125 million ‘bits’ of information that is the rough difference between the genome that produces the human brain and the genome that produces the chimp brain. This search space is remarkably small – the equivalent of just 25 million English words or 30 copies of the King James Bible. There is no fundamental barrier to decoding this information and it is possible that the ultimate secret could be described relatively simply (cf. this great essay by physicist Michael Nielsen). One of the world’s leading experts has told me they think a large proportion of this problem could be solved in about a decade with a few tens of billions and something like an Apollo programme level of determination.

Not only is our destructive and disruptive power still getting bigger quickly – it is also getting cheaper and faster every year. The change in speed adds another dimension to the problem. In the period between the Archduke’s murder and the outbreak of World War I a month later it is striking how general failures of individuals and institutions were compounded by the way in which events moved much faster than the ‘mission critical’ institutions could cope with such that soon everyone was behind the pace, telegrams were read in the wrong order and so on. The crisis leading to World War I was about 30 days from the assassination to the start of general war – about 700 hours. The timescale for deciding what to do between receiving a warning of nuclear missile launch and deciding to launch yourself is less than half an hour and the President’s decision time is less than this, maybe just minutes. This is a speedup factor of at least 103.

Economic crises already occur far faster than human brains can cope with. The financial system has made a transition from people shouting at each other to a a system dominated by high frequency ‘algorithmic trading’ (HFT), i.e. machine intelligence applied to robot trading with vast volumes traded on a global spatial scale and a microsecond (10-6) temporal scale far beyond the monitoring, understanding, or control of regulators and politicians. There is even competition for computer trading bases in specific locations based on calculations of Special Relativity as the speed of light becomes a factor in minimising trade delays (cf. Relativistic statistical arbitrage, Wissner-Gross). ‘The Flash Crash’ of 9 May 2010 saw the Dow lose hundreds of points in minutes. Mini ‘flash crashes’ now blow up and die out faster than humans can notice. Given our institutions cannot cope with economic decisions made at ‘human speed’, a fortiori they cannot cope with decisions made at ‘robot speed’. There is scope for worse disasters than 2008 which would further damage the moral credibility of decentralised markets and provide huge chances for extremist political entrepreneurs to exploit. (* See endnote.)

What about the individuals and institutions that are supposed to cope with all this?

Our brains have not evolved much in thousands of years and are subject to all sorts of constraints including evolved heuristics that lead to misunderstanding, delusion, and violence particularly under pressure. There is a terrible mismatch between the sort of people that routinely dominate mission critical political institutions and the sort of people we need: high-ish IQ (we need more people >145 (+3SD) while almost everybody important is between 115-130 (+1 or 2SD)), a robust toolkit for not fooling yourself including quantitative problem-solving (almost totally absent at the apex of relevant institutions), determination, management skills, relevant experience, and ethics. While our ancestor chiefs at least had some intuitive feel for important variables like agriculture and cavalry our contemporary chiefs (and those in the media responsible for scrutiny of decisions) generally do not understand their equivalents, and are often less experienced in managing complex organisations than their predecessors.

The national institutions we have to deal with such crises are pretty similar to those that failed so spectacularly in summer 1914 yet they face crises moving at least ~103 times faster and involving ~106 times more destructive power able to kill ~1010 people. The international institutions developed post-1945 (UN, EU etc) contribute little to solving the biggest problems and in many ways make them worse. These institutions fail constantly and do not  – cannot – learn much.

If we keep having crises like we have experienced over the past century then this combination of problems pushes the probability of catastrophe towards ‘overwhelmingly likely’.

*

What Is To be Done? There’s plenty of room at the top

‘In a knowledge-rich world, progress does not lie in the direction of reading information faster, writing it faster, and storing more of it. Progress lies in the direction of extracting and exploiting the patterns of the world… And that progress will depend on … our ability to devise better and more powerful thinking programs for man and machine.’ Herbert Simon, Designing Organizations for an Information-rich World, 1969.

‘Fascinating that the same problems recur time after time, in almost every program, and that the management of the program, whether it happened to be government or industry, continues to avoid reality.’ George Mueller, pioneer of ‘systems engineering’ and ‘systems management’ and the man most responsible for the success of the 1969 moon landing.

Somehow the world has to make a series of extremely traumatic and dangerous transitions over the next 20 years. The main transition needed is:

Embed reliably the unrecognised simplicities of high performance teams (HPTs), including personnel selection and training, in ‘mission critical’ institutions while simultaneously developing a focused project that radically improves the prospects for international cooperation and new forms of political organisation beyond competing nation states.

Big progress on this problem would automatically and for free bring big progress on other big problems. It could improve (even save) billions of lives and save a quadrillion dollars (~$1015). If we avoid disasters then the error-correcting institutions of markets and science will, patchily, spread peace, prosperity, and learning. We will make big improvements with public services and other aspects of ‘normal’ government. We will have a healthier political culture in which representative institutions, markets serving the public (not looters), and international cooperation are stronger.

Can a big jump in performance – ‘better and more powerful thinking programs for man and machine’ – somehow be systematised?

Feynman once gave a talk titled ‘There’s plenty of room at the bottom’ about the huge performance improvements possible if we could learn to do engineering at the atomic scale – what is now called nanotechnology. There is also ‘plenty of room at the top’ of political structures for huge improvements in performance. As I explained recently, the victory of the Leave campaign owed more to the fundamental dysfunction of the British Establishment than it did to any brilliance from Vote Leave. Despite having the support of practically every force with power and money in the world (including the main broadcasters) and controlling the timing and legal regulation of the referendum, they blew it. This was good if you support Leave but just how easily the whole system could be taken down should be frightening for everybody .

Creating high performance teams is obviously hard but in what ways is it really hard? It is not hard in the same sense that some things are hard like discovering profound new mathematical knowledge. HPTs do not require profound new knowledge. We have been able to read the basic lessons in classics for over two thousand years. We can see relevant examples all around us of individuals and teams showing huge gains in effectiveness.

The real obstacle is not financial. The financial resources needed are remarkably low and the return on small investments could be incalculably vast. We could significantly improve the decisions of the most powerful 100 people in the UK or the world for less than a million dollars (~£106) and a decade-long project on a scale of just ~£107 could have dramatic effects.

The real obstacle is not a huge task of public persuasion – quite the opposite. A government that tried in a disciplined way to do this would attract huge public support. (I’ve polled some ideas and am confident about this.) Political parties are locked in a game that in trying to win in conventional ways leads to the public despising them. Ironically if a party (established or new) forgets this game and makes the public the target of extreme intelligent focus then it would not only make the world better but would trounce their opponents.

The real obstacle is not a need for breakthrough technologies though technology could help. As Colonel Boyd used to shout, ‘People, ideas, machines – in that order!’

The real obstacle is that although we can all learn and study HPTs it is extremely hard to put this learning to practical use and sustain it against all the forces of entropy that constantly operate to degrade high performance once the original people have gone. HPTs are episodic. They seem to come out of nowhere, shock people, then vanish with the rare individuals. People write about them and many talk about learning from them but in fact almost nobody ever learns from them – apart, perhaps, from those very rare people who did not need to learn – and nobody has found a method to embed this learning reliably and systematically in institutions that can maintain it. The Prussian General Staff remained operationally brilliant but in other ways went badly wrong after the death of the elder Moltke. When George Mueller left NASA it reverted to what it had been before he arrived – management chaos. All the best companies quickly go downhill after the departure of people like Bill Gates – even when such very able people have tried very very hard to avoid exactly this problem.

Charlie Munger, half of the most successful investment team in world history, has a great phrase he uses to explain their success that gets to the heart of this problem:

‘There isn’t one novel thought in all of how Berkshire [Hathaway] is run. It’s all about … exploiting unrecognized simplicities… It’s a community of like-minded people, and that makes most decisions into no-brainers. Warren [Buffett] and I aren’t prodigies. We can’t play chess blindfolded or be concert pianists. But the results are prodigious, because we have a temperamental advantage that more than compensates for a lack of IQ points.’

The simplicities that bring high performance in general, not just in investing, are largely unrecognised because they conflict with many evolved instincts and are therefore psychologically very hard to implement. The principles of the Buffett-Munger success are clear – they have even gone to great pains to explain them and what the rest of us should do – and the results are clear yet still almost nobody really listens to them and above average intelligence people instead constantly put their money into active fund management that is proved to destroy wealth every year!

Most people think they are already implementing these lessons and usually strongly reject the idea that they are not. This means that just explaining things is very unlikely to work:

‘I’d say the history that Charlie [Munger] and I have had of persuading decent, intelligent people who we thought were doing unintelligent things to change their course of action has been poor.’ Buffett.

Even more worrying, it is extremely hard to take over organisations that are not run right and make them excellent.

‘We really don’t believe in buying into organisations to change them.’ Buffett.

If people won’t listen to the world’s most successful investor in history on his own subject, and even he finds it too hard to take over failing businesses and turn them around, how likely is it that politicians and officials incentivised to keep things as they are will listen to ideas about how to do things better? How likely is it that a team can take over broken government institutions and make them dramatically better in a way that outlasts the people who do it? Bureaucracies are extraordinarily resistant to learning. Even after the debacles of 9/11 and the Iraq War, costing many lives and trillions of dollars, and even after the 2008 Crash, the security and financial bureaucracies in America and Europe are essentially the same and operate on the same principles.

Buffett’s success is partly due to his discipline in sticking within what he and Munger call their ‘circle of competence’. Within this circle they have proved the wisdom of avoiding trying to persuade people to change their minds and avoiding trying to fix broken institutions.

This option is not available in politics. The Enlightenment and the scientific revolution give us no choice but to try to persuade people and try to fix or replace broken institutions. In general ‘it is better to undertake revolution than undergo it’. How might we go about it? What can people who do not have any significant power inside the system do? What international projects are most likely to spark the sort of big changes in attitude we urgently need?

This is the first of a series. I will keep it separate from the series on the EU referendum though it is connected in the sense that I spent a year on the referendum in the belief that winning it was a necessary though not sufficient condition for Britain to play a part in improving the quality of government dramatically and improving the probability of avoiding the disasters that will happen if politics follows a normal path. I intended to implement some of these ideas in Downing Street if the Boris-Gove team had not blown up. The more I study this issue the more confident I am that dramatic improvements are possible and the more pessimistic I am that they will happen soon enough.

Please leave comments and corrections…

* A new transatlantic cable recently opened for financial trading. Its cost? £300 million. Its advantage? It shaves 2.6 milliseconds off the latency of financial trades. Innovative groups are discussing the application of military laser technology, unmanned drones circling the earth acting as routers, and even the use of neutrino communication (because neutrinos can go straight through the earth just as zillions pass through your body every second without colliding with its atoms) – cf. this recent survey in Nature.

Times op-ed: What Is To Be Done? An answer to Dean Acheson’s famous quip

On Tuesday 2 December, the Times ran an op-ed by me you can see HERE. It got cut slightly for space. Below is the original version that makes a few other points.

I will use this as a start of a new series on what can be done to improve the system including policy, institutions, and management.

NB1. The article is not about the election or party politics. My suggested answer to Acheson is, I think, powerful partly because it is something that could be agreed upon, in various dimensions, across the political spectrum. I left the DfE in January partly because I wanted to have nothing to do with the election and this piece should not be seen as advocating ‘something Tories should say for the election’. I do not think any of the three leaders are interested in or could usefully pursue this goal – I am suggesting something for the future when they are all gone, and they could quite easily all be gone by summer 2016.

NB2. My view is not – ‘public bad, private good’. As I explained in The Hollow Men II, a much more accurate and interesting distinction is between a) large elements of state bureaucracies, dreadful NGOs like the CBI, and many large companies (that have many of the same HR and incentive problems as bureaucracies), where very similar types rise to power because the incentives encourage political skills rather than problem-solving skills, and b) start-ups, where entrepreneurs and technically trained problem-solvers can create organisations that operate extremely differently, move extremely fast, create huge value, and so on.

(For a great insight into start-up world I recommend two books. 1. Peter Thiel’s new book ‘Zero To One‘. 2. An older book telling the story of a mid-90s start-up that was embroiled in the Netscape/Microsoft battle and ended up selling itself to the much better organised Bill Gates – ‘High Stakes, No Prisoners‘ by Charles Ferguson. This blog, Creators and Rulers, by physicist Steve Hsu also summarises some crucial issues excellently.)

Some parts of government can work like start-ups but the rest of the system tries to smother them. For example, DARPA (originally ARPA) was set up as part of the US panic about Sputnik. It operates on very different principles from the rest of the Pentagon’s R&D system. Because it is organised differently, it has repeatedly produced revolutionary breakthroughs (e.g. the internet) despite a relatively tiny budget. But also note – DARPA has been around for decades and its operating principles are clear but nobody else has managed to create an equivalent (openly at least). Also note that despite its track record, D.C. vultures constantly circle trying to make it conform to the normal rules or otherwise clip its wings. (Another interesting case study would be the alternative paths taken by a) the US government developing computers with one genius mathematician, von Neumann, post-1945 (a lot of ‘start-up’ culture) and b) the UK government’s awful decisions in the same field with another genius mathematician, Turing, post-1945.)

When I talk about new and different institutions below, this is one of the things I mean. I will write a separate blog just on DARPA but I think there are two clear action points:

1. We should create a civilian version of DARPA aimed at high-risk/high-impact breakthroughs in areas like energy science and other fundamental areas such as quantum information and computing that clearly have world-changing potential. For it to work, it would have to operate outside all existing Whitehall HR rules, EU procurement rules and so on – otherwise it would be as dysfunctional as the rest of the system (defence procurement is in a much worse state than the DfE, hence, for example, billions spent on aircraft carriers that in classified war-games cannot be deployed to warzones). We could easily afford this if we could prioritise – UK politicians spend far more than DARPA’s budget on gimmicks every year – and it would provide huge value with cascading effects through universities and businesses.

2. The lessons of why and how it works – such as incentivising goals, not micromanaging methods – have general application that are useful when we think generally about Whitehall reform.

Finally, government institutions also operate to exclude from power scientists, mathematicians, and people from the start-up world – the Creators, in Hsu’s term. We need to think very hard about how to use their very rare and valuable skills as a counterweight to the inevitable psychological type that politics will always tend to promote.

Please leave comments, corrections etc below.

DC


 

What Is to Be Done?

There is growing and justified contempt for Westminster. Number Ten has become a tragi-comic press office with the prime minister acting as Über Pundit. Cameron, Miliband, and Clegg see only the news’s flickering shadows on their cave wall – they cannot see the real world behind them. As they watch floundering MPs, officials know they will stay in charge regardless of an election that won’t significantly change Britain’s trajectory.

Our institutions failed pre-1914, pre-1939, and with Europe. They are now failing to deal with a combination of debts, bad public services, security threats, and profound transitions in geopolitics, economics, and technology. They fail in crises because they are programmed to fail. The public knows we need to reorient national policy and reform these institutions. How?

First, we need a new goal. In 1962, Dean Acheson quipped that Britain had failed to find a post-imperial role. The romantic pursuit of ‘the special relationship’ and the deluded pursuit of a leading EU role have failed. This role should focus on making Britain the best country for education and science. Pericles described Athens as ‘the school of Greece’: we could be the school of the world because this role depends on thought and organisation, not size.

This would give us a central role in tackling humanity’s biggest problems and shaping the new institutions, displacing the EU and UN, that will emerge as the world makes painful transitions in coming decades. It would provide a focus for financial priorities and Whitehall’s urgent organisational surgery. It’s a goal that could mobilise very large efforts across political divisions as the pursuit of knowledge is an extremely powerful motive.

Second, we must train aspirant leaders very differently so they have basic quantitative skills and experience of managing complex projects. We should stop selecting leaders from a subset of Oxbridge egomaniacs with a humanities degree and a spell as spin doctor.

In 2012, Fields Medallist Tim Gowers sketched a ‘maths for presidents’ course to teach 16-18 year-olds crucial maths skills, including probability and statistics, that can help solve real problems. It starts next year. [NB. The DfE funded MEI to turn this blog into a real course.] A version should be developed for MPs and officials. (A similar ‘Physics for Presidents‘ course has been a smash hit at Berkeley.) Similarly, pioneering work by Philip Tetlock on ‘The Good Judgement Project‘ has shown that training can reduce common cognitive errors and can sharply improve the quality of political predictions, hitherto characterised by great self-confidence and constant failure.

New interdisciplinary degrees such as ‘World history and maths for presidents’ would improve on PPE but theory isn’t enough. If we want leaders to make good decisions amid huge complexity, and learn how to build great teams, then we should send them to learn from people who’ve proved they can do it. Instead of long summer holidays, embed aspirant leaders with Larry Page or James Dyson so they can experience successful leadership.

Third, because better training can only do so much, we must open political institutions to people and ideas from outside SW1.

A few people prove able repeatedly to solve hard problems in theoretical and practical fields, creating important new ideas and huge value. Whitehall and Westminster operate to exclude them from influence. Instead, they tend to promote hacks and apparatchiks and incentivise psychopathic narcissism and bureaucratic infighting skills – not the pursuit of the public interest.

How to open up the system? First, a Prime Minister should be able to appoint Secretaries of State from outside Parliament. [How? A quick and dirty solution would be: a) shove them in the Lords, b) give Lords ministers ‘rights of audience’ in the Commons, c) strengthen the Select Committee system.]

Second, the 150 year experiment with a permanent civil service should end and Whitehall must open to outsiders. The role of Permanent Secretary should go and ministers should appoint departmental chief executives so they are really responsible for policy and implementation. Expertise should be brought in as needed with no restrictions from the destructive civil service ‘human resources’ system that programmes government to fail. Mass collaborations are revolutionising science [cf. Michael Nielsen’s brilliant book]; they could revolutionise policy. Real openness would bring urgent focus to Whitehall’s disastrous lack of skills in basic functions such as budgeting, contracts, procurement, legal advice, and project management.

Third, Whitehall’s functions should be amputated. The Department for Education improved as Gove shrank it. Other departments would benefit from extreme focus, simplification, and firing thousands of overpaid people. If the bureaucracy ceases to be ‘permanent’, it can adapt quickly. Instead of obsessing on process, distorting targets, and micromanaging methods, it could shift to incentivising goals and decentralising methods.

Fourth, existing legal relationships with the EU and ECHR must change. They are incompatible with democratic and effective government

Fifth, Number Ten must be reoriented from ‘government by punditry’ to a focus on the operational planning and project management needed to convert priorities to reality over months and years.

Technological changes such as genetic engineering and machine intelligence are bringing revolution. It would be better to undertake it than undergo it.