‘Two hands are a lot’ — we’re hiring data scientists, project managers, policy experts, assorted weirdos…

‘This is possibly the single largest design flaw contributing to the bad Nash equilibrium in which … many governments are stuck. Every individual high-functioning competent person knows they can’t make much difference by being one more face in that crowd.’ Eliezer Yudkowsky, AI expert, LessWrong etc.

‘[M]uch of our intellectual elite who think they have “the solutions” have actually cut themselves off from understanding the basis for much of the most important human progress.’ Michael Nielsen, physicist and one of the handful of most interesting people I’ve ever talked to.

‘People, ideas, machines — in that order.’ Colonel Boyd.

‘There isn’t one novel thought in all of how Berkshire [Hathaway] is run. It’s all about … exploiting unrecognized simplicities.’ Charlie Munger,Warren Buffett’s partner.

‘Two hands, it isn’t much considering how the world is infinite. Yet, all the same, two hands, they are a lot.’ Alexander Grothendieck, one of the great mathematicians.

*

There are many brilliant people in the civil service and politics. Over the past five months the No10 political team has been lucky to work with some fantastic officials. But there are also some profound problems at the core of how the British state makes decisions. This was seen by pundit-world as a very eccentric view in 2014. It is no longer seen as eccentric. Dealing with these deep problems is supported by many great officials, particularly younger ones, though of course there will naturally be many fears — some reasonable, most unreasonable.

Now there is a confluence of: a) Brexit requires many large changes in policy and in the structure of decision-making, b) some people in government are prepared to take risks to change things a lot, and c) a new government with a significant majority and little need to worry about short-term unpopularity while trying to make rapid progress with long-term problems.

There is a huge amount of low hanging fruit — trillion dollar bills lying on the street — in the intersection of:

  • the selection, education and training of people for high performance
  • the frontiers of the science of prediction
  • data science, AI and cognitive technologies (e.g Seeing Rooms, ‘authoring tools designed for arguing from evidence’, Tetlock/IARPA prediction tournaments that could easily be extended to consider ‘clusters’ of issues around themes like Brexit to improve policy and project management)
  • communication (e.g Cialdini)
  • decision-making institutions at the apex of government.

We want to hire an unusual set of people with different skills and backgrounds to work in Downing Street with the best officials, some as spads and perhaps some as officials. If you are already an official and you read this blog and think you fit one of these categories, get in touch.

The categories are roughly:

  • Data scientists and software developers
  • Economists
  • Policy experts
  • Project managers
  • Communication experts
  • Junior researchers one of whom will also be my personal assistant
  • Weirdos and misfits with odd skills

We want to improve performance and make me much less important — and within a year largely redundant. At the moment I have to make decisions well outside what Charlie Munger calls my ‘circle of competence’ and we do not have the sort of expertise supporting the PM and ministers that is needed. This must change fast so we can properly serve the public.

A. Unusual mathematicians, physicists, computer scientists, data scientists

You must have exceptional academic qualifications from one of the world’s best universities or have done something that demonstrates equivalent (or greater) talents and skills. You do not need a PhD — as Alan Kay said, we are also interested in graduate students as ‘world-class researchers who don’t have PhDs yet’.

You should have the following:

  • PhD or MSc in maths or physics.
  • Outstanding mathematical skills are essential.
  • Experience of using analytical languages: e.g. Python, SQL, R.
  • Familiarity with data tools and technologies such as Postgres, Scikit Learn, NEO4J.

A few examples of papers that you will be considering:

You should be able to explain to other mathematicians, physicists and computer scientists the ideas in such papers, discuss what could be useful for our projects, synthesise ideas for other data scientists, and apply them to practical problems. You won’t be expert on the maths used in all these papers but you should be confident that you could study it and understand it.

We will be using machine learning and associated tools so it is important you can program. You do not need software development levels of programming but it would be an advantage.

Those applying must watch Bret Victor’s talks and study Dynamic Land. If this excites you, then apply; if not, then don’t. I and others interviewing will discuss this with anybody who comes for an interview. If you want a sense of the sort of things you’d be working on, then read my previous blog on Seeing Rooms, cognitive technologies etc.

B. Unusual software developers

We are looking for great software developers who would love to work on these ideas, build tools and work with some great people. You should also look at some of Victor’s technical talks on programming languages and the history of computing.

You will be working with data scientists, designers and others.

C. Unusual economists

We are looking to hire some recent graduates in economics. You should a) have an outstanding record at a great university, b) understand conventional economic theories, c) be interested in arguments on the edge of the field — for example, work by physicists on ‘agent-based models’ or by the hedge fund Bridgewater on the failures/limitations of conventional macro theories/prediction, and d) have very strong maths and be interested in working with mathematicians, physicists, and computer scientists.

The ideal candidate might, for example, have a degree in maths and economics, worked at the LHC in one summer, worked with a quant fund another summer, and written software for a YC startup in a third summer!

We’ve found one of these but want at least one more.

The sort of conversation you might have is discussing these two papers in Science (2015): Computational rationality: A converging paradigm for intelligence in brains, minds, and machines, Gershman et al and Economic reasoning and artificial intelligence, Parkes & Wellman

You will see in these papers an intersection of:

  • von Neumann’s foundation of game theory and ‘expected utility’,
  • mainstream economic theories,
  • modern theories about auctions,
  • theoretical computer science (including problems like the complexity of probabilistic inference in Bayesian networks, which is in the NP–hard complexity class),
  • ideas on ‘computational rationality’ and meta-reasoning from AI, cognitive science and so on.

If these sort of things are interesting, then you will find this project interesting.

It’s a bonus if you can code but it isn’t necessary.

D. Great project managers.

If you think you are one of the a small group of people in the world who are truly GREAT at project management, then we want to talk to you. Victoria Woodcock ran Vote Leave — she was a truly awesome project manager and without her Cameron would certainly have won. We need people like this who have a 1 in 10,000 or higher level of skill and temperament.

The Oxford Handbook on Megaprojects points out that it is possible to quantify lessons from the failures of projects like high speed rail projects because almost all fail so there is a large enough sample to make statistical comparisons, whereas there can be no statistical analysis of successes because they are so rare.

It is extremely interesting that the lessons of Manhattan (1940s), ICBMs (1950s) and Apollo (1960s) remain absolutely cutting edge because it is so hard to apply them and almost nobody has managed to do it. The Pentagon systematically de-programmed itself from more effective approaches to less effective approaches from the mid-1960s, in the name of ‘efficiency’. Is this just another way of saying that people like General Groves and George Mueller are rarer than Fields Medallists?

Anyway — it is obvious that improving government requires vast improvements in project management. The first project will be improving the people and skills already here.

If you want an example of the sort of people we need to find in Britain, look at this on CC Myers — the legendary builders. SPEED. We urgently need people with these sort of skills and attitude. (If you think you are such a company and you could dual carriageway the A1 north of Newcastle in record time, then get in touch!)

E. Junior researchers

In many aspects of government, as in the tech world and investing, brains and temperament smash experience and seniority out of the park.

We want to hire some VERY clever young people either straight out of university or recently out with with extreme curiosity and capacity for hard work.

One of you will be a sort of personal assistant to me for a year — this will involve a mix of very interesting work and lots of uninteresting trivia that makes my life easier which you won’t enjoy. You will not have weekday date nights, you will sacrifice many weekends — frankly it will hard having a boy/girlfriend at all. It will be exhausting but interesting and if you cut it you will be involved in things at the age of ~21 that most people never see.

I don’t want confident public school bluffers. I want people who are much brighter than me who can work in an extreme environment. If you play office politics, you will be discovered and immediately binned.

F. Communications

In SW1 communication is generally treated as almost synonymous with ‘talking to the lobby’. This is partly why so much punditry is ‘narrative from noise’.

With no election for years and huge changes in the digital world, there is a chance and a need to do things very differently.

We’re particularly interested in deep experts on TV and digital. We also are interested in people who have worked in movies or on advertising campaigns. There are some very interesting possibilities in the intersection of technology and story telling — if you’ve done something weird, this may be the place for you.

I noticed in the recent campaign that the world of digital advertising has changed very fast since I was last involved in 2016. This is partly why so many journalists wrongly looked at things like Corbyn’s Facebook stats and thought Labour was doing better than us — the ecosystem evolves rapidly while political journalists are still behind the 2016 tech, hence why so many fell for Carole’s conspiracy theories. The digital people involved in the last campaign really knew what they are doing, which is incredibly rare in this world of charlatans and clients who don’t know what they should be buying. If you are interested in being right at the very edge of this field, join.

We have some extremely able people but we also must upgrade skills across the spad network.

G. Policy experts

One of the problems with the civil service is the way in which people are shuffled such that they either do not acquire expertise or they are moved out of areas they really know to do something else. One Friday, X is in charge of special needs education, the next week X is in charge of budgets.

There are, of course, general skills. Managing a large organisation involves some general skills. Whether it is Coca Cola or Apple, some things are very similar — how to deal with people, how to build great teams and so on. Experience is often over-rated. When Warren Buffett needed someone to turn around his insurance business he did not hire someone with experience in insurance: ‘When Ajit entered Berkshire’s office on a Saturday in 1986, he did not have a day’s experience in the insurance business’ (Buffett).

Shuffling some people who are expected to be general managers is a natural thing but it is clear Whitehall does this too much while also not training general management skills properly. There are not enough people with deep expertise in specific fields.

If you want to work in the policy unit or a department and you really know your subject so that you could confidently argue about it with world-class experts, get in touch.

It’s also the case that wherever you are most of the best people are inevitably somewhere else. This means that governments must be much better at tapping distributed expertise. Of the top 20 people in the world who best understand the science of climate change and could advise us what to do with COP 2020, how many now work as a civil servant/spad or will become one in the next 5 years?

G. Super-talented weirdos

People in SW1 talk a lot about ‘diversity’ but they rarely mean ‘true cognitive diversity’. They are usually babbling about ‘gender identity diversity blah blah’. What SW1 needs is not more drivel about ‘identity’ and ‘diversity’ from Oxbridge humanities graduates but more genuine cognitive diversity.

We need some true wild cards, artists, people who never went to university and fought their way out of an appalling hell hole, weirdos from William Gibson novels like that girl hired by Bigend as a brand ‘diviner’ who feels sick at the sight of Tommy Hilfiger or that Chinese-Cuban free runner from a crime family hired by the KGB. If you want to figure out what characters around Putin might do, or how international criminal gangs might exploit holes in our border security, you don’t want more Oxbridge English graduates who chat about Lacan at dinner parties with TV producers and spread fake news about fake news.

By definition I don’t really know what I’m looking for but I want people around No10 to be on the lookout for such people.

We need to figure out how to use such people better without asking them to conform to the horrors of ‘Human Resources’ (which also obviously need a bonfire).

*

Send a max 1 page letter plus CV to ideasfornumber10@gmail.com and put in the subject line ‘job/’ and add after the / one of: data, developer, econ, comms, projects, research, policy, misfit.

I’ll have to spend time helping you so don’t apply unless you can commit to at least 2 years.

I’ll bin you within weeks if you don’t fit — don’t complain later because I made it clear now. 

I will try to answer as many as possible but last time I publicly asked for job applications in 2015 I was swamped and could not, so I can’t promise an answer. If you think I’ve insanely ignored you, persist for a while.

I will use this blog to throw out ideas. It’s important when dealing with large organisations to dart around at different levels, not be stuck with formal hierarchies. It will seem chaotic and ‘not proper No10 process’ to some. But the point of this government is to do things differently and better and this always looks messy. We do not care about trying to ‘control the narrative’ and all that New Labour junk and this government will not be run by ‘comms grid’.

As Paul Graham and Peter Thiel say, most ideas that seem bad are bad but great ideas also seem at first like bad ideas — otherwise someone would have already done them. Incentives and culture push people in normal government systems away from encouraging ‘ideas that seem bad’. Part of the point of a small, odd No10 team is to find and exploit, without worrying about media noise, what Andy Grove called ‘very high leverage ideas’ and these will almost inevitably seem bad to most.

I will post some random things over the next few weeks and see what bounces back — it is all upside, there’s no downside if you don’t mind a bit of noise and it’s a fast cheap way to find good ideas…

Complexity, ‘fog and moonlight’, prediction, and politics III – von Neumann and economics as a science

The two previous blogs in this series were:

Part I HERE.

Part II HERE.

All page references unless otherwise stated are to my essay, HERE.

Since the financial crisis, there has been a great deal of media and Westminster discussion about why so few people predicted it and what the problems are with economics and financial theory.

Absent from most of this discussion is the history of the subject and its intellectual origins. Economics is clearly a vital area of prediction for people in politics. I therefore will explore some intellectual history to provide context for contemporary discussions about ‘what is wrong with economics and what should be done about it’.

*

It has often been argued that the ‘complexity’ of human behaviour renders precise mathematical treatment of economics impossible, or that the undoubted errors of modern economics in applying the tools of mathematical physics are evidence of the irredeemable hopelessness of the goal.

For example, Kant wrote in Critique of Judgement:

‘For it is quite certain that in terms of merely mechanical principles of nature we cannot even adequately become familiar with, much less explain, organized beings and how they are internally possible. So certain is this that we may boldly state that it is absurd for human beings even to attempt it, or to hope that perhaps some day another Newton might arise who would explain to us, in terms of natural laws unordered by any intention, how even a mere blade of grass is produced. Rather, we must absolutely deny that human beings have such insight.’

In the middle of the 20th Century, one of the great minds of the century turned to this question. John Von Neumann was one of the leading mathematicians of the 20th Century. He was also a major contributor to the mathematisation of quantum mechanics, created the field of ‘quantum logic’ (1936), worked as a consultant to the Manhattan Project and other wartime technological projects, and was one of the two most important creators of modern computer science and artificial intelligence (with Turing) which he developed partly for immediate problems he was working on (e.g. the hydrogen bomb and ICBMs) and partly to probe the general field of understanding complex nonlinear systems.  In an Endnote of my essay I discuss some of these things.

Von Neumann was regarded as an extraordinary phenomenon even by  the cleverest people in the world. The Nobel-winning physicist and mathematician Wigner said of von Neumann:

‘I have known a great many intelligent people in my life. I knew Planck, von Laue and Heisenberg. Paul Dirac was my brother in law; Leo Szilard and Edward Teller have been among my closest friends; and Albert Einstein was a good friend, too. But none of them had a mind as quick and acute as Jansci von Neumann. I have often remarked this in the presence of those men and no one ever disputed me… Perhaps the consciousness of animals is more shadowy than ours and perhaps their perceptions are always dreamlike. On the opposite side, whenever I talked with the sharpest intellect whom I have known – with von Neumann – I always had the impression that only he was fully awake, that I was halfway in a dream.’

Von Neumann also had a big impact on economics. During breaks from pressing wartime business, he wrote ‘Theory of Games and Economic Behaviour’ (TGEB) with Morgenstern. This practically created the field of ‘game theory’ which one sees so many references to now. TGEB was one of the most influential books ever written on economics. (The movie The Beautiful Mind gave a false impression of Nash’s contribution.) In the Introduction, his explanation of some foundational issues concerning economics, mathematics, and prediction is clearer for non-specialists than any other thing I have seen on the subject and cuts through a vast amount of contemporary discussion which fogs the issues.

This documentary on von Neumann is also interesting:

*

There are some snippets from pre-20th Century figures explaining concepts in terms recognisable through the prism of Game Theory. For example, Ampère wrote ‘Considerations sur la théorie mathématique du jeu’ in 1802 and credited Buffon’s 1777 essay on ‘moral arithmetic’ (Buffon figured out many elements that Darwin would later harmonise in his theory of evolution). Cournot discussed what would later be described as a specific example of a ‘Nash equilibrium’ viz duopoly in 1838.  The French mathematician Emile Borel also made contributions to early ideas.

However, Game Theory really was born with von Neumann. In December 1926, he presented the paper ‘Zur Theorie der Gesellschaftsspiele’ (On the Theory of Parlour Games, published in 1928, translated version here) while working on the Hilbert Programme [cf. Endnote on Computing] and quantum mechanics. The connection between the Hilbert Programme and the intellectual origins of Game Theory can perhaps first be traced in a 1912 lecture by one of the world’s leading mathematicians and founders of modern set theory, Zermelo, titled ‘On the Application of Set Theory to Chess’ which stated of its purpose:

‘… it is not dealing with the practical method for games, but rather is simply giving an answer to the following question: can the value of a particular feasible position in a game for one of the players be mathematically and objectively decided, or can it at least be defined without resorting to more subjective psychological concepts?’

He presented a theorem that chess is strictly determined: that is, either (i) white can force a win, or (ii) black can force a win, or (iii) both sides can force at least a draw. Which of these is the actual solution to chess remains unknown. (Cf. ‘Zermelo and the Early History of Game Theory’, by Schwalbe & Walker (1997), which argues that modern scholarship is full of errors about this paper. According to Leonard (2006), Zermelo’s paper was part of a general interest in the game of chess among intellectuals in the first third of the 20th century. Lasker (world chess champion 1897–1921) knew Zermelo and both were taught by Hilbert.)

Von Neumman later wrote:

‘[I]f the theory of Chess were really fully known there would be nothing left to play.  The theory would show which of the three possibilities … actually holds, and accordingly the play would be decided before it starts…  But our proof, which guarantees the validity of one (and only one) of these three alternatives, gives no practically usable method to determine the true one. This relative, human difficulty necessitates the use of those incomplete, heuristic methods of playing, which constitute ‘good’ Chess; and without it there would be no element of ‘struggle’ and ‘surprise’ in that game.’ (p.125)

Elsewhere, he said:

‘Chess is not a game. Chess is a well-defined computation. You may not be able to work out the answers, but in theory there must be a solution, a right procedure in any position. Now, real games are not like that at all. Real life is not like that. Real life consists of bluffing, of little tactics of deception, of asking yourself what is the other man going to think I mean to do. And that is what games are about in my theory.’

Von Neumman’s 1928 paper proved that there is a rational solution to every two-person zero-sum game. That is, in a rigorously defined game with precise payoffs, there is a mathematically rational strategy for both sides – an outcome which both parties cannot hope to improve upon. This introduced the concept of the minimax: choose a strategy that minimises the possible maximum loss.

Zero-sum games are those where the payoffs ‘sum’ to zero. For example, chess or Go are zero-sum games because the gain (+1) and the loss (-1) sum to zero; one person’s win is another’s loss. The famous Prisoners’ Dilemma is a non-zero-sum game because the payoffs do not sum to zero: it is possible for both players to make gains. In some games the payoffs to the players are symmetrical (e.g. Prisoners’ Dilemma); in others, the payoffs are asymmetrical (e.g. the Dictator or Ultimatum games). Sometimes the strategies can be completely stated without the need for probabilities (‘pure’ strategies); sometimes, probabilities have to be assigned for particular actions (‘mixed’ strategies).

While the optimal minimax strategy might be a ‘pure’ strategy, von Neumann showed it would often have to be a ‘mixed strategy’ and this means a spontaneous return of probability, even if the game itself does not involve probability.

‘Although … chance was eliminated from the games of strategy under consideration (by introducing expected values and eliminating ‘draws’), it has now made a spontaneous reappearance. Even if the rules of the game do not contain any elements of ‘hazard’ … in specifying the rules of behaviour for the players it becomes imperative to reconsider the element of ‘hazard’. The dependence on chance (the ‘statistical’ element) is such an intrinsic part of the game itself (if not of the world) that there is no need to introduce it artificially by way of the rules of the game itself: even if the formal rules contain no trace of it, it still will assert itself.’

In 1932, he gave a lecture titled ‘On Certain Equations of Economics and A Generalization of Brouwer’s Fixed-Point Theorem’. It was published in German in 1938 but not in English until 1945 when it was published as ‘A Model of General Economic Equilibrium’. This paper developed what is sometimes called von Neumann’s Expanding Economic Model and has been described as the most influential article in mathematical economics. It introduced the use of ‘fixed-point theorems’. (Brouwer’s ‘fixed point theorem’ in topology proved that, in crude terms, if you lay a map of the US on the ground anywhere in the US, one point on the map will lie precisely over the point it represents on the ground beneath.)

‘The mathematical proof is possible only by means of a generalisation of Brouwer’s Fix-Point Theorem, i.e. by the use of very fundamental topological facts… The connection with topology may be very surprising at first, but the author thinks that it is natural in problems of this kind. The immediate reason for this is the occurrence of a certain ‘minimum-maximum’ problem… It is closely related to another problem occurring in the theory of games.’

Von Neumann’s application of this topological proof to economics was very influential in post-war mathematical economics and in particular was used by Arrow and Debreu in their seminal 1954 paper on general equilibrium, perhaps the central paper in modern traditional economics.

*

In the late 1930’s, von Neumann, based at the IAS in Princeton to which Gödel and Einstein also fled to escape the Nazis, met up with the economist Oskar Morgenstern who was deeply dissatisfied with the state of economics. In 1940, von Neumann began his collaboration on games with Morgenstern, while working on war business including the Manhattan Project and computers, that became The Theory of Games and Economic Behavior (TGEB). By December 1942, he had finished his work on this though it was not published until 1944.

In the Introduction of TGEB, von Neumann explained the real problems in applying mathematics to economics and why Kant was wrong.

‘It is not that there exists any fundamental reason why mathematics should not be used in economics.  The arguments often heard that because of the human element, of the psychological factors etc., or because there is – allegedly – no measurement of important factors, mathematics will find no application, can all be dismissed as utterly mistaken.  Almost all these objections have been made, or might have been made, many centuries ago in fields where mathematics is now the chief instrument of analysis [e.g. physics in the 16th Century or chemistry and biology in the 18th]…

‘As to the lack of measurement of the most important factors, the example of the theory of heat is most instructive; before the development of the mathematical theory the possibilities of quantitative measurements were less favorable there than they are now in economics.  The precise measurements of the quantity and quality of heat (energy and temperature) were the outcome and not the antecedents of the mathematical theory…

‘The reason why mathematics has not been more successful in economics must be found elsewhere… To begin with, the economic problems were not formulated clearly and are often stated in such vague terms as to make mathematical treatment a priori appear hopeless because it is quite uncertain what the problems really are. There is no point using exact methods where there is no clarity in the concepts and issues to which they are applied. [Emphasis added] Consequently the initial task is to clarify the knowledge of the matter by further careful descriptive work. But even in those parts of economics where the descriptive problem has been handled more satisfactorily, mathematical tools have seldom been used appropriately. They were either inadequately handled … or they led to mere translations from a literary form of expression into symbols…

‘Next, the empirical background of economic science is definitely inadequate. Our knowledge of the relevant facts of economics is incomparably smaller than that commanded in physics at the time when mathematization of that subject was achieved.  Indeed, the decisive break which came in physics in the seventeenth century … was possible only because of previous developments in astronomy. It was backed by several millennia of systematic, scientific, astronomical observation, culminating in an observer of unparalleled calibre, Tycho de Brahe. Nothing of this sort has occurred in economics. It would have been absurd in physics to expect Kepler and Newton without Tycho – and there is no reason to hope for an easier development in economics…

‘Very frequently the proofs [in economics] are lacking because a mathematical treatment has been attempted in fields which are so vast and so complicated that for a long time to come – until much more empirical knowledge is acquired – there is hardly any reason at all to expect progress more mathematico. The fact that these fields have been attacked in this way … indicates how much the attendant difficulties are being underestimated. They are enormous and we are now in no way equipped for them.

‘[We will need] changes in mathematical technique – in fact, in mathematics itself…  It must not be forgotten that these changes may be very considerable. The decisive phase of the application of mathematics to physics – Newton’s creation of a rational discipline of mechanics – brought about, and can hardly be separated from, the discovery of the infinitesimal calculus…

‘The importance of the social phenomena, the wealth and multiplicity of their manifestations, and the complexity of their structure, are at least equal to those in physics.  It is therefore to be expected – or feared – that mathematical discoveries of a stature comparable to that of calculus will be needed in order to produce decisive success in this field… A fortiori, it is unlikely that a mere repetition of the tricks which served us so well in physics will do for the social phenomena too.  The probability is very slim indeed, since … we encounter in our discussions some mathematical problems which are quite different from those which occur in physical science.’

Von Neumann therefore exhorted economists to humility and the task of ‘careful, patient description’, a ‘task of vast proportions’. He stressed that economics could not attack the ‘big’ questions – much more modesty is needed to establish an exact theory for very simple problems, and build on those foundations.

‘The everyday work of the research physicist is … concerned with special problems which are “mature”… Unifications of fields which were formerly divided and far apart may alternate with this type of work. However, such fortunate occurrences are rare and happen only after each field has been thoroughly explored. Considering the fact that economics is much more difficult, much less understood, and undoubtedly in a much earlier stage of its evolution as a science than physics, one should clearly not expect more than a development of the above type in economics either…

‘The great progress in every science came when, in the study of problems which were modest as compared with ultimate aims, methods were developed which could be extended further and further. The free fall is a very trivial physical example, but it was the study of this exceedingly simple fact and its comparison with astronomical material which brought forth mechanics. It seems to us that the same standard of modesty should be applied in economics… The sound procedure is to obtain first utmost precision and mastery in a limited field, and then to proceed to another, somewhat wider one, and so on.’

Von Neumann therefore aims in TGEB at ‘the behavior of the individual and the simplest forms of exchange’ with the hope that this can be extended to more complex situations.

‘Economists frequently point to much larger, more ‘burning’ questions…  The experience of … physics indicates that this impatience merely delays progress, including that of the treatment of the ‘burning’ questions. There is no reason to assume the existence of shortcuts…

‘It is a well-known phenomenon in many branches of the exact and physical sciences that very great numbers are often easier to handle than those of medium size. An almost exact theory of a gas, containing about 1025 freely moving particles, is incomparably easier than that of the solar system, made up of 9 major bodies… This is … due to the excellent possibility of applying the laws of statistics and probabilities in the first case.

‘This analogy, however, is far from perfect for our problem. The theory of mechanics for 2,3,4,… bodies is well known, and in its general theoretical …. form is the foundation of the statistical theory for great numbers. For the social exchange economy – i.e. for the equivalent ‘games of strategy’ – the theory of 2,3,4… participants was heretofore lacking. It is this need that … our subsequent investigations will endeavor to satisfy. In other words, only after the theory for moderate numbers of participants has been satisfactorily developed will it be possible to decide whether extremely great numbers of participants simplify the situation.’

[This last bit has changed slightly as I forgot to include a few things.]

While some of von Neumann’s ideas were extremely influential on economics, his general warning here about the right approach to the use of mathematics was not widely heeded.

Most economists initially ignored von Neumann’s ideas.  Martin Shubik, a Princeton mathematician, recounted the scene he found:

‘The contrast of attitudes between the economics department and mathematics department was stamped on my mind… The former projected an atmosphere of dull-business-as-usual conservatism… The latter was electric with ideas… When von Neumann gave his seminar on his growth model, with a few exceptions, the serried ranks of Princeton economists could scarce forebear to yawn.’

However, a small but influential number, including mathematicians at the RAND Corporation (the first recognisable modern ‘think tank’) led by John Williams, applied it to nuclear strategy as well as economics. For example, Albert Wohlstetter published his Selection and Use of Strategic Air Bases (RAND, R-266, sometimes referred to as The Basing Study) in 1954. Williams persuaded the RAND Board and the infamous SAC General Curtis LeMay to develop a social science division at RAND that could include economists and psychologists to explore the practical potential of Game Theory further. He also hired von Neumann as a consultant; when the latter said he was too busy, Williams told him he only wanted the time it took von Neumann to shave in the morning. (Kubrick’s Dr Strangelove satirised RAND’s use of game theory.)

In the 1990’s, the movie A Beautiful Mind brought John Nash into pop culture, giving the misleading impression that he was the principle developer of Game Theory. Nash’s fame rests principally on work he did in 1950-1 that became known as ‘the Nash Equilibrium’. In Non-Cooperative Games (1950), he wrote:

‘[TGEB] contains a theory of n-person games of a type which we would call cooperative. This theory is based on an analysis of the interrelationships of the various coalitions which can be formed by the players of the game. Our theory, in contradistinction, is based on the absence of coalitions in that it is assumed each participant acts independently, without collaboration or communication with any of the others… [I have proved] that a finite non-cooperative game always has at least one equilibrium point.’

Von Neumann remarked of Nash’s results, ‘That’s trivial you know. It’s just a fixed point theorem.’ Nash himself said that von Neumann was a ‘European gentleman’ but was not impressed by his results.

In 1949-50, Merrill Flood, another RAND researcher, began experimenting with staff at RAND (and his own children) playing various games. Nash’s results prompted Flood to create what became known as the ‘Prisoners’ Dilemma’ game, the most famous and studied game in Game Theory. It was initially known as ‘a non-cooperative pair’ and the name ‘Prisoners’ Dilemma’ was given it by Tucker later in 1950 when he had to think of a way of explaining the concept to his psychology class at Stanford and hit on an anecdote putting the payoff matrix in the form of two prisoners in separate cells considering the pros and cons of ratting on each other.

The game was discussed and played at RAND without publishing. Flood wrote up the results in 1952 as an internal RAND memo accompanied by the real-time comments of the players. In 1958, Flood published the results formally (Some Experimental Games). Flood concluded that ‘there was no tendency to seek as the final solution … the Nash equilibrium point.’ Prisoners’ Dilemma has been called ‘the E. coli of social psychology’ by Axelrod, so popular has it become in so many different fields. Many studies of Iterated Prisoners’ Dilemma games have shown that generally neither human nor evolved genetic algorithm players converge on the Nash equilibrium but choose to cooperate far more than Nash’s theory predicts.

Section 7 of my essay discusses some recent breakthroughs, particularly the paper by Press & Dyson. This is also a good example of how mathematicians can invade fields. Dyson’s professional fields are maths and physics. He was persuaded to look at the Prisoners’ Dilemma. He very quickly saw that there was a previously unseen class of strategies that has opened up a whole new field for exploration. This article HERE is a good summary of recent developments.

Von Neumann’s brief forays into economics were very much a minor sideline for him but there is no doubt of his influence. Despite von Neumann’s reservations about neoclassical economics, Paul Samuelson admitted that, ‘He darted briefly into our domain, and it has never been the same since.’

In 1987, the Santa Fe Institute, founded by Gell Mann and others, organised a ten day meeting to discuss economics. On one side, they invited leading economists such as Kenneth Arrow and Larry Summers; on the other side, they invited physicists, biologists, and computer scientists, such as Nobel-winning Philip Anderson and John Holland (inventor of genetic algorithms). When the economists explained their assumptions, Phil Anderson said to them, ‘You guys really believe that?

One physicist later described the meeting as like visiting Cuba – the cars are all from the 1950’s so on one hand you admire them for keeping them going, but on the other hand they are old technology; similarly the economists were ingeniously using 19th Century maths and physics on very out-of-date models. The physicists were shocked at how the economists were content with simplifying assumptions that were obviously contradicted by reality, and they were surprised at the way the economists seemed unconcerned about how poor their predictions were.

Twenty-seven years later, this problem is more acute. Some economists are listening to the physicists about fundamental problems with the field. Some are angrily rejecting the physicists’ incursions into their field.

Von Neumann explained the scientifically accurate approach to economics and mathematics. [Inserted later. I mean – the first part of his comments above that discusses maths, prediction, models, and economics and physics. As far as I know, nobody seriously disputes these comments – i.e. that Kant and the general argument that ‘maths cannot make inroads into economics’ are wrong. The later comments about building up economic theories from theories of 2, 3, 4 agents etc is a separate topic. See comments.] In other blogs in this series I will explore some of the history of economic thinking as part of a description of the problem for politicians and other decision-makers who need to make predictions.

Please leave corrections and comments below.