#29 On the referendum & #4c on Expertise: On the ARPA/PARC ‘Dream Machine’, science funding, high performance, and UK national strategy

Post-Brexit Britain should be considering the intersection of 1) ARPA/PARC-style science research and ‘systems management’ for managing complex projects with 2) the reform of government institutions so that high performance teams — with different education/training (‘Tetlock processes’) and tools (including data science and visualisations of interactive models of complex systems) — can make ‘better decisions in a complex world’.  

This paper examines the ARPA/PARC vision for computing and the nature of the two organisations. In the 1960s visionaries such as Joseph Licklider, Robert Taylor and Doug Engelbart developed a vision of networked interactive computing that provided the foundation not just for new technologies but for whole new industries. Licklider, Sutherland, Taylor et al provided a model (ARPA) for how science funding can work. Taylor provided a model (PARC) of how to manage a team of extremely talented people who turned a profound vision into reality. The original motivation for the vision of networked interactive computing was to help humans make good decisions in a complex world.

This story suggests ideas about how to make big improvements in the world with very few resources if they are structured right. From a British perspective it also suggests ideas about what post-Brexit Britain should do to help itself and the world and how it might be possible to force some sort of ‘phase transition’ on the rotten Westminster/Whitehall system.

For the PDF of the paper click HERE. Please correct errors with page numbers below. I will update it after feedback.

Further Reading

The Dream Machine.

Dealers of Lightning.

‘Sketchpad: A man-machine graphical communication system’, Ivan Sutherland 1963.

Oral history interview with Sutherland, head of ARPA’s IPTO division 1963-5.

This link has these seminal papers:

  • Man-Computer Symbiosis, Licklider (1960)
  • The computer as a communications device, Licklider & Taylor (1968)

Watch Alan Kay explain how to invent the future to YCombinator classes HERE and HERE.  

HERE for Kay quotes from emails with Bret Victor.

HERE for Kay’s paper on PARC, The Power of the Context.

Kay’s Early History of Smalltalk.

HERE for a conversation between Kay and Engelbart.

Alan Kay’s tribute to Ted Nelson at “Intertwingled” Fest (an Alto using Smalltalk).

Personal Distributed Computing: The Alto and Ethernet Software1, Butler Lampson. 

You and Your Research, Richard Hamming.

AI nationalism, essay by Ian Hogarth. This concerns implications of AI for geopolitics.

Drones go to work, Chris Anderson (one of the pioneers of commercial drones). This explains the economics of the drone industry.

Meditations on Moloch, Scott Alexander. This is an extremely good essay in general about deep problems with our institutions.

Intelligence Explosion Microeconomics, Yudkowsky.

Autonomous technology and the greater human good. Omohundro.

Can intelligence explode? Hutter.

For the issue of IQ, genetics and the distribution of talent (and much much more), cf. Steve Hsu’s brilliant blog.

Bret Victor.

Michael Nielsen.

For some pre-history on computers, cf. The birth of computational thinking (some of the history of computing devices before the Turing/von Neumann revolution) and The crisis of mathematical paradoxes, Gödel, Turing and the basis of computing (some of the history of ideas about mathematical foundations and logic such as the famous papers by Gödel and Turing in the 1930s)

Part I of this series of blogs is HERE.

Part II on the emergence of ‘systems management’, how George Mueller used it to put man on the moon, and a checklist of how successful management of complex projects is systematically different to how Whitehall works is HERE.

Effective action #4a: ‘Expertise’ from fighting and physics to economics, politics and government

‘We learn most when we have the most to lose.’ Michael Nielsen, author of the brilliant book Reinventing Discovery.

‘There isn’t one novel thought in all of how Berkshire [Hathaway] is run. It’s all about … exploiting unrecognized simplicities…Warren [Buffett] and I aren’t prodigies.We can’t play chess blindfolded or be concert pianists. But the results are prodigious, because we have a temperamental advantage that more than compensates for a lack of IQ points.’ Charlie Munger,Warren Buffett’s partner.

I’m going to do a series of blogs on the differences between fields dominated by real expertise (like fighting and physics) and fields dominated by bogus expertise (like macroeconomic forecasting, politics/punditry, active fund management).

Fundamental to real expertise is 1) whether the informational structure of the environment is sufficiently regular that it’s possible to make good predictions and 2) does it allow high quality feedback and therefore error-correction. Physics and fighting: Yes. Predicting recessions, forex trading and politics: not so much. I’ll look at studies comparing expert performance in different fields and the superior performance of relatively very simple models over human experts in many fields.

This is useful background to consider a question I spend a lot of time thinking about: how to integrate a) ancient insights and modern case studies about high performance with b) new technology and tools in order to improve the quality of individual, team, and institutional decision-making in politics and government.

I think that fixing the deepest problems of politics and government requires a more general and abstract approach to principles of effective action than is usually considered in political discussion and such an approach could see solutions to specific problems almost magically appear, just as you see happen in a very small number of organisations — e.g Mueller’s Apollo program (man on the moon), PARC (interactive computing), Berkshire Hathaway (most successful investors in history), all of which have delivered what seems almost magical performance because they embody a few simple, powerful, but largely unrecognised principles. There is no ‘solution’ to the fundamental human problem of decision-making amid extreme complexity and uncertainty but we know a) there are ways to do things much better and b) governments mostly ignore them, so there is extremely valuable low-hanging fruit if, but it’s a big if, we can partially overcome the huge meta-problem that governments tend to resist the institutional changes needed to become a learning system.

This blog presents some basic background ideas and examples…

*

Extreme sports: fast feedback = real expertise 

In the 1980s and early 1990s, there was an interesting case study in how useful new knowledge jumped from a tiny isolated group to the general population with big effects on performance in a community. Expertise in Brazilian jiu-jitsu was taken from Brazil to southern California by the Gracie family. There were many sceptics but they vanished rapidly because the Gracies were empiricists. They issued ‘the Gracie challenge’.

All sorts of tough guys, trained in all sorts of ways, were invited to come to their garage/academy in Los Angeles to fight one of the Gracies or their trainees. Very quickly it became obvious that the Gracie training system was revolutionary and they were real experts because they always won. There was very fast and clear feedback on predictions. Gracie jiujitsu quickly jumped from an LA garage to TV. At the televised UFC 1 event in 1993 Royce Gracie defeated everyone and a multi-billion dollar business was born.

People could see how training in this new skill could transform performance. Unarmed combat changed across the world. Disciplines other than jiu jitsu have had to make a choice: either isolate themselves and not compete with jiu jitsu or learn from it. If interested watch the first twenty minutes of this documentary (via professor Steve Hsu, physicist, amateur jiu jitsu practitioner, and predictive genomics expert).

Video: Jiu Jitsu comes to Southern California

Royce Gracie, UFC 1 1993 

Screenshot 2018-05-22 10.41.20

 

Flow, deep in the zone

Another field where there is clear expertise is extreme skiing and snowboarding. One of the leading pioneers, Jeremy Jones, describes how he rides ‘spines’ hurtling down the side of mountains:

‘The snow is so deep you need to use your arms and chest to swim, and your legs to ride. They also collapse underfoot, so you’re riding mini-avalanches and dodging slough slides. Spines have blind rollovers, so you can’t see below. Or to the side. Every time the midline is crossed, it’s a leap into the abyss. Plus, there’s no way to stop and every move is amplified by complicated forces. A tiny hop can easily become a twenty-foot ollie. It’s the absolute edge of chaos. But the easiest way to live in the moment is to put yourself in a situation where there’s no other choice. Spines demand that, they hurl you deep into the zone.’ Emphasis added.

Video: Snowboarder Jeremy Jones

What Jones calls ‘the zone’ is also known as ‘flow‘ — a particular mental state, triggered by environmental cues, that brings greatly enhanced performance. It is the object of study in extreme sports and by the military and intelligence services: for example DARPA is researching whether stimulating the brain can trigger ‘flow’ in snipers.

Flow — or control on ‘the edge of chaos’ where ‘every move is amplified by complicated forces’ — comes from training in which people learn from very rapid feedback between predictions and reality. In ‘flow’, brains very rapidly and accurately process environmental signals and generate hypothetical scenarios/predictions and possible solutions based on experience and training. Jones’s performance is inseparable from developing this fingertip feeling. Similarly, an expert fireman feels the glow of heat on his face in a slightly odd way and runs out of the building just before it collapses without consciously knowing why he did it: his intuition has been trained to learn from feedback and make predictions. Experts operating in ‘flow’ do not follow what is sometimes called the ‘rational model’ of decision-making in which they sequentially interrogate different options — they pattern-match solutions extremely quickly based on experience and intuition.

The video below shows extreme expertise in a state of ‘flow’ with feedback on predictions within milliseconds. This legendary ride is so famous not because of the size of the wave but its odd, and dangerous, nature. If you watch carefully you will see what a true expert in ‘flow’ can do: after committing to the wave Hamilton suddenly realises that unless he reaches back with the opposite hand to normal and drags it against the wall of water behind him, he will get sucked up the wave and might die. (This wave had killed someone a few weeks earlier.) Years of practice and feedback honed the intuition that, when faced with a very dangerous and fast moving problem, almost instantly (few seconds maximum) pattern-matched an innovative solution.

Video: surfer Laird Hamilton in one of the greatest ever rides

 

The faster the feedback cycle, the more likely you are to develop a qualitative improvement in speed that destroys an opponent’s decision-making cycle. If you can reorient yourself faster to the ever-changing environment than your opponent, then you operate inside their ‘OODA loop’ (Observe-Orient-Decide-Act) and the opponent’s performance can quickly degrade and collapse.

This lesson is vital in politics. You can read it in Sun Tzu and see it with Alexander the Great. Everybody can read such lessons and most people will nod along. But it is very hard to apply because most political/government organisations are programmed by their incentives to prioritise seniority, process and prestige over high performance and this slows and degrades decisions. Most organisations don’t do it. Further, political organisations tend to make too slowly those decisions that should be fast and too quickly those decisions that should be slow — they are simultaneously both too sluggish and too impetuous, which closes off favourable branching histories of the future.

Video: Boxer Floyd Mayweather, best fighter of his generation and one of the quickest and best defensive fighters ever

The most extreme example in extreme sports is probably ‘free soloing’ — climbing mountains without ropes where one mistake means instant death. If you want to see an example of genuine expertise and the value of fast feedback then watch Alex Honnold.

Video: Alex Honnold ‘free solos’ El Sendero Luminoso (terrifying)

Music is similar to sport. There is very fast feedback, learning, and a clear hierarchy of expertise.

Video: Glenn Gould playing the Goldberg Variations (slow version)

Our culture treats expertise/high performance in fields like sport and music very differently to maths/science education and politics/government. As Alan Kay observes, music and sport expertise is embedded in the broader culture. Millions of children spend large amounts of time practising hard skills. Attacks on them as ‘elitist’ don’t get the same damaging purchase as in other fields and the public don’t mind about elite selection for sports teams or orchestras.

‘Two ideas about this are that a) these [sport/music] are activities in which the basic act can be seen clearly from the first, and b) are already part of the larger culture. There are levels that can be seen to be inclusive starting with modest skills. I think a very large problem for the learning of both science and math is just how invisible are their processes, especially in schools.’ Kay 

When it comes to maths and science education, the powers-that-be (in America and Britain) try very hard and mostly successfully to ignore the question: where are critical thresholds for valuable skills that develop true expertise. This is even more a problem with the concept of ‘thinking rationally’, for which some basic logic, probability, and understanding of scientific reasoning is a foundation. Discussion of politics and government almost totally ignores the concept of training people to update their opinions in response to new evidence — i.e adapt to feedback. The ‘rationalist community’ — people like Scott Alexander who wrote this fantastic essay (Moloch) about why so much goes wrong, or the recent essays by Eliezer Yudkowsky — are ignored at the apex of power. I will return to the subject of how to create new education and training programmes for elite decision-makers. It is a good time for UK universities to innovate in this field, as places like Stanford are already doing. Instead of training people like Cameron and Adonis to bluff with PPE, we need courses that combine rational thinking with practical training in managing complex projects. We need people who practice really hard making predictions in ways we know work well (cf. Tetlock) then update in response to errors.

*

A more general/abstract approach to reforming government

If we want to get much higher performance in government, then we need to think rigorously about: the selection of people and teams, their education and training, their tools, and the institutions (incentives and so on) that surround and shape them.

Almost all analysis of politics and government considers relatively surface phenomena. For example, the media briefly blasts headlines about Carillion’s collapse or our comical aircraft carriers but there is almost no consideration of the deep reasons for such failures and therefore nothing tends to happen — the media caravan moves on and the officials and ministers keep failing in the same ways. This is why, for example, the predicted abject failure of the traditional Westminster machinery to cope with Brexit negotiations has not led to self-examination and learning but, instead, mostly to a visible determination across both sides of the Brexit divide in SW1 to double down on long-held delusions.

Progress requires attacking the ‘system of systems’ problem at the right ‘level’. Attacking the problems directly — let’s improve policy X and Y, let’s swap ‘incompetent’ A for ‘competent’ B — cannot touch the core problems, particularly the hardest meta-problem that government systems bitterly fight improvement. Solving the explicit surface problems of politics and government is best approached by a more general focus on applying abstract principles of effective action. We need to surround relatively specific problems with a more general approach. Attack at the right level will see specific solutions automatically ‘pop out’ of the system. One of the most powerful simplicities in all conflict (almost always unrecognised) is: ‘winning without fighting is the highest form of war’. If we approach the problem of government performance at the right level of generality then we have a chance to solve specific problems ‘without fighting’ — or, rather, without fighting nearly so much and the fighting will be more fruitful.

This is not a theoretical argument. If you look carefully at ancient texts and modern case studies, you see that applying a small number of very simple, powerful, but largely unrecognised principles (that are very hard for organisations to operationalise) can produce extremely surprising results.

We have no alternative to trying. Without fundamental changes to government, we will lose our hourly game of Russian roulette with technological progress.

‘The combination of physics and politics could render the surface of the earth uninhabitable… [T]he ever accelerating progress of technology and changes in the mode of human life … gives the appearance of approaching some essential singularity in the history of the race beyond which human affairs, as we know them, could not continue.’ John von Neumann

As Steve Hsu says: Pessimism of the Intellect, Optimism of the Will.


Ps. There is an interesting connection between the nature of counterfactual reasoning in the fast-moving world of extreme sports and the theoretical paper I posted yesterday on state-of-the-art AI. The human ability to interrogate stored representations of their environment with counter-factual questions is fundamental to the nature of intelligence and developing expertise in physical and mental skills. It is, for now, absent in machines.

On the referendum #23, a year after victory: ‘a change of perspective is worth 80 IQ points’ & ‘how to capture the heavens’

‘Just like all British governments, they will act more or less in a hand to mouth way on the spur of the moment, but they will not think out and adopt a steady policy.’ Earl Cromer, 1896.

Fascinating that the same problems recur time after time, in almost every program, and that the management of the program, whether it happened to be government or industry, continues to avoid reality.’ George Mueller, pioneer of systems management and head of the Apollo programme to put man on the moon.

Traditional cultures, those that all humans lived in until quite recently and which still survive in pockets, don’t realise that they are living inside a particular perspective. They think that what they see is ‘reality’. It is, obviously, not their fault. It is not because they are stupid. It is a historical accident that they did/do not have access to mental models that help more accurate thinking about reality.

Westminster and the other political cultures dotted around the world are similar to these traditional cultures. They think they they are living in ‘reality’. The MPs and pundits get up, read each other, tweet at each other, give speeches, send press releases, have dinner, attack, fuck or fight each other, do the same tomorrow and think ‘this is reality’. Like traditional cultures they are wrong. They are living inside a particular perspective that enormously distorts reality. 

They are trapped in thinking about today and their careers. They are trapped in thinking about incremental improvements. Almost nobody has ever been part of a high performance team responsible for a complex project. The speciality is a hot take to explain post facto what one cannot predict. They mostly don’t know what they don’t know. They don’t understand the decentralised information processing that allows markets to enable complex coordination. They don’t understand how scientific research works and they don’t value it. Their daily activity is massively constrained by the party and state bureaucracies that incentivise behaviour very different to what humanity needs to create long-term value. As Michael Nielsen (author of Reinventing Science) writes:

‘[M]uch of our intellectual elite who think they have “the solutions” have actually cut themselves off from understanding the basis for much of the most important human progress.’

Unlike traditional cultures, our modern political cultures don’t have the excuse of our hunter-gatherer ancestors. We could do better. But it is very very hard to escape the core imperatives that make big bureaucracies — public companies as well as state bureaucracies — so bad at learning. Warren Buffet explained decades ago how institutions actively fight against learning and fight to stay in a closed and vicious feedback loop:

‘My most surprising discovery: the overwhelming importance in business of an unseen force that we might call “the institutional imperative”. In business school, I was given no hint of the imperative’s existence and I did not intuitively understand it when I entered the business world. I thought then that decent, intelligence, and experienced managers would automatically make rational business decisions. But I learned the hard way that isn’t so. Instead rationality frequently wilts when the institutional imperative comes into play.

‘For example, 1) As if governed by Newton’s First Law, any institution will resist any change in its current direction. 2) … Corporate projects will materialise to soak up available funds. 3) Any business craving of the leader, however foolish, will quickly be supported by … his troops. 4) The behaviour of peer companies … will be mindlessly imitated.’

Almost nobody really learns from the world’s most successful investor about investing and how to run a successful business with good corporate governance. (People read what he writes but almost no investors choose to operate long-term like him, I think it is still true that not a single public company has copied his innovations with corporate governance like ‘no pay for company directors’, and governments have consistently rejected his and Munger’s advice about controlling the looting of public companies by management.) Almost nobody really learns how to do things better from the experience of dealing with this ‘institutional imperative’. We fail over and over again in the same way, trusting in institutions that are programmed to fail.

It is very very hard for humans to lift our eyes from today and to go out into the future and think about what could be done to bring the future back to the present. Like ants crawling around on the leaf, we political people only know our leaf.

Science has shown us a different way. Newton looked up from his leaf, looked far away from today, and created a new perspective — a new model of reality. It took an extreme genius to discover something like calculus but once discovered billions of people who are far from being geniuses can use this new perspective. Science advances by turning new ideas into standard ideas so each generation builds on the last.

Politics does the equivalent of constantly trying to reinvent children’s arithmetic and botching it. It does not build reliable foundations of knowledge. Archimedes is no longer cutting edge. Thucydides and Sun Tzu are still cutting edge. Even though Tetlock and others have shown how to start making similar progress with politics, our political cultures fiercely resist learning and fight ferociously to stay in closed and failing feedback loops.

In many ways our political culture has regressed as it has become more and more audio-visual and less and less literate. (Only 31% of US college graduates can read at a basic level. I’d guess it’s similar here. See end.) I’ve experimented with the way Jeff Bezos runs meetings at Amazon: i.e start the meeting with giving people a 5-10 page memo to read. Impossible in Westminster, nobody will sit and read like that! Officials have tried and failed for a year to get senior ministers to engage with complex written material about the EU negotiations. TV news dominates politics and is extremely low-bandwidth: it contains a few hundred words and rarely uses graphics properly. Evan Davis illustrates a comment about ‘going down the plughole’ with a picture of water down a plughole and Nick Robinson illustrates a comment about ‘the economy taking off’ with a picture of a plane taking off. The constant flow of bullshit from the likes of Robert Peston and Jon Snow dominates the medium because competition has been impossible until recently. BUT, although technology is making these charlatans less relevant (good) it also creates new problems and will not necessarily improve the culture.

Watching political news makes you dumber — switch it off and read books! If you work in it, either QUIT or go on holiday and come back determined to subvert it. How? Start with a previous blog which has some ideas, like tracking properly which people have a record of getting things right and wrong. Every editor I’ve suggested this to winces and says ‘impossible’. Insiders fear accountability and competition.

Today, the anniversary of the referendum, is a good day to forget the babble in the bubble and think about lessons from another project that changed the world, the famous ARPA/PARC team of the 1960s and 1970s.

*

ARPA/PARC and ‘capturing the heavens’: The best way to predict the future is to invent it

The panic over Sputnik brought many good things such as a huge increase in science funding. America also created the Advanced Research Projects Agency (ARPA, which later added ‘Defense’ and became DARPA). Its job was to fund high risk / high payoff technology development. In the 1960s and 1970s, a combination of unusual people and unusually wise funding from ARPA created a community that in turn invented the internet, or ‘the intergalactic network’ as Licklider originally called it, and the personal computer. One of the elements of this community was PARC, a research centre working for Xerox. As Bill Gates said, he and Steve Jobs essentially broke into PARC, stole their ideas, and created Microsoft and Apple.

The ARPA/PARC project has created over 35 TRILLION DOLLARS of value for society and counting.

The whole story is fascinating in many ways. I won’t go into the technological aspects. I just want to say something about the process.

What does a process that produces ideas that change the world look like?

One of the central figures was Alan Kay. One of the most interesting things about the project is that not only has almost nobody tried to repeat this sort of research but the business world has even gone out of its way to spread mis-information about it because it was seen as so threatening to business-as-usual.

I will sketch a few lessons from one of Kay’s pieces but I urge you to read the whole thing.

‘This is what I call “The power of the context” or “Point of view is worth 80 IQ points”. Science and engineering themselves are famous examples, but there are even more striking processes within these large disciplines. One of the greatest works of art from that fruitful period of ARPA/PARC research in the 60s and 70s was the almost invisible context and community that catalysed so many researchers to be incredibly better dreamers and thinkers. That it was a great work of art is confirmed by the world-changing results that appeared so swiftly, and almost easily. That it was almost invisible, in spite of its tremendous success, is revealed by the disheartening fact today that, as far as I’m aware, no governments and no companies do edge-of-the-art research using these principles.’

‘[W]hen I think of ARPA/PARC, I think first of good will, even before brilliant people… Good will and great interest in graduate students as “world-class researchers who didn’t have PhDs yet” was the general rule across the ARPA community.

‘[I]t is no exaggeration to say that ARPA/PARC had “visions rather than goals” and “funded people, not projects”. The vision was “interactive computing as a complementary intellectual partner for people pervasively networked world-wide”. By not trying to derive specific goals from this at the funding side, ARPA/PARC was able to fund rather different and sometimes opposing points of view.

‘The pursuit of Art always sets off plans and goals, but plans and goals don’t always give rise to Art. If “visions not goals” opens the heavens, it is important to find artistic people to conceive the projects.

‘Thus the “people not projects” principle was the other cornerstone of ARPA/PARC’s success. Because of the normal distribution of talents and drive in the world, a depressingly large percentage of organizational processes have been designed to deal with people of moderate ability, motivation, and trust. We can easily see this in most walks of life today, but also astoundingly in corporate, university, and government research. ARPA/PARC had two main thresholds: self-motivation and ability. They cultivated people who “had to do, paid or not” and “whose doings were likely to be highly interesting and important”. Thus conventional oversight was not only not needed, but was not really possible. “Peer review” wasn’t easily done even with actual peers. The situation was “out of control”, yet extremely productive and not at all anarchic.

‘”Out of control” because artists have to do what they have to do. “Extremely productive” because a great vision acts like a magnetic field from the future that aligns all the little iron particle artists to point to “North” without having to see it. They then make their own paths to the future. Xerox often was shocked at the PARC process and declared it out of control, but they didn’t understand that the context was so powerful and compelling and the good will so abundant, that the artists worked happily at their version of the vision. The results were an enormous collection of breakthroughs.

‘Our game is more like art and sports than accounting, in that high percentages of failure are quite OK as long as enough larger processes succeed… [I]n most processes today — and sadly in most important areas of technology research — the administrators seem to prefer to be completely in control of mediocre processes to being “out of control” with superproductive processes. They are trying to “avoid failure” rather than trying to “capture the heavens”.

‘All of these principles came together a little over 30 years ago to eventually give rise to 1500 Altos, Ethernetworked to: each other, Laserprinters, file servers and the ARPAnet, distributed to many kinds of end-users to be heavily used in real situations. This anticipated the commercial availability of this genre by 10-15 years. The best way to predict the future is to invent it.

‘[W]e should realize that many of the most important ARPA/PARC ideas haven’t yet been adopted by the mainstream. For example, it is amazing to me that most of Doug Engelbart’s big ideas about “augmenting the collective intelligence of groups working together” have still not taken hold in commercial systems. What looked like a real revolution twice for end-users, first with spreadsheets and then with Hypercard, didn’t evolve into what will be commonplace 25 years from now, even though it could have. Most things done by most people today are still “automating paper, records and film” rather than “simulating the future”. More discouraging is that most computing is still aimed at adults in business, and that aimed at nonbusiness and children is mainly for entertainment and apes the worst of television. We see almost no use in education of what is great and unique about computer modeling and computer thinking. These are not technological problems but a lack of perspective. Must we hope that the open-source software movements will put things right?

‘The ARPA/PARC history shows that a combination of vision, a modest amount of funding, with a felicitous context and process can almost magically give rise to new technologies that not only amplify civilization, but also produce tremendous wealth for the society. Isn’t it time to do this again by Reason, even with no Cold War to use as an excuse? How about helping children of the world grow up to think much better than most adults do today? This would truly create “The Power of the Context”.’

Note how this story runs contrary to how free market think tanks and pundits describe technological development. The impetus for most of this development came from government funding, not markets.

Also note that every attempt since the 1950s to copy ARPA and JASON (the semi-classified group that partly gave ARPA its direction) in the UK has been blocked by Whitehall. The latest attempt was in 2014 when the Cabinet Office swatted aside the idea. Hilariously its argument was ‘DARPA has had a lot of failures’ thus demonstrating extreme ignorance about the basic idea — the whole point is you must have failures and if you don’t have lots of failures then you are failing!

People later claimed that while PARC may have changed the world it never made any money for XEROX. This is ‘absolute bullshit’ (Kay). It made billions from the laser printer alone and overall Xerox made 250 times what they invested in PARC before they went bust. In 1983 they fired Bob Taylor, the manager of PARC and the guy who made it all happen.

‘They hated [Taylor] for the very reason that most companies hate people who are doing something different, because it makes middle and upper management extremely uncomfortable. The last thing they want to do is make trillions, they want to make a few millions in a comfortable way’ (Kay).

Someone finally listened to Kay recently. ‘YC Research’, the research arm of the world’s most successful (by far) technology incubator, is starting to fund people in this way. I am not aware of any similar UK projects though I know that a small network of people are thinking again about how something like this could be done here. If you can help them, take a risk and help them! Someone talk to science minister Jo Johnson but be prepared for the Treasury’s usual ignorant bullshit — ‘what are we buying for our money, and how can we put in place appropriate oversight and compliance?’ they will say!

Why is this relevant to the referendum?

As we ponder the future of the UK-EU relationship shaped amid the farce of modern Whitehall, we should think hard about the ARPA/PARC example: how a small group of people can make a huge breakthrough with little money but the right structure, the right ways of thinking, and the right motives.

Those of us outside the political system thinking ‘we know we can do so much better than this but HOW can we break through the bullshit?’ need to change our perspective and gain 80 IQ points.

This real picture is a metaphor for the political culture: ad hoc solutions that are either bad or don’t scale.

Screenshot 2017-06-14 16.58.14.png

ARPA said ‘Let’s get rid of all the wires’. How do we ‘get rid of all the wires’ and build something different that breaks open the closed and failing political cultures? Winning the referendum was just one step that helps clear away dead wood but we now need to build new things.

The ARPA vision that aligned the artists ‘like little iron filings’ was:

‘Computers are destined to become interactive intellectual amplifiers for everyone in the world universally networked worldwide’ (Licklider).

We need a motivating vision aimed not at tomorrow but at changing the basic wiring of  the whole system, a vision that can align ‘the little iron filings’, and then start building for the long-term.

I will go into what I think this vision could be and how to do it another day. I think it is possible to create something new that could scale very fast and enable us to do politics and government extremely differently, as different to today as the internet and PC were to the post-war mainframes. This would enable us to build huge long-term value for humanity in a relatively short time (less than 20 years). To create it we need a process as well suited to the goal as the ARPA/PARC project was and incorporating many of its principles.

We must try to escape the current system with its periodic meltdowns and international crises. These crises move 500-1,000 times faster than that of summer 1914. Our destructive potential is at least a million-fold greater than it was in 1914. Yet we have essentially the same hierarchical command-and-control decision-making systems in place now that could not even cope with 1914 technology and pace. We have dodged nuclear wars by fluke because individuals made snap judgements in minutes. Nobody who reads the history of these episodes can think that this is viable long-term, and we will soon have another wave of innovation to worry about with autonomous robots and genetic engineering. Technology gives us no option but to try to overcome evolved instincts like destroying out-group competitors.

In a previous blog I outlined how the ‘systems management’ approach used to put man on the moon provides principles for a new approach.

*

Ironically, one of the very few people in politics who understood the sort of thinking needed was … Jean Monnet, the architect of the EEC/EU! Monnet understood how to step back from today and build institutions. He worked operationally to prepare the future:

‘If there was stiff competition round the centres of power, there was practically none in the area where I wanted to work – preparing the future.’

Monnet was one of the few people in modern politics who really deserve the label ‘genius’. The story of how he wangled the creation of his institutions through the daily chaos of post-war politics is a lesson to anybody who wants to get things done.

But the institutions he created are in many ways the opposite of what the world needs. Their core operating principle is perpetual centralisation of power in the hands of an all powerful bureaucracy (Commission) and Court (ECJ). Nothing that works well in the world works like this!

Thanks to the prominence of Farage the dominant story among educated people is that those who got us out of the EU want to take us back to the pre-1914 era of hostile competing nation states. Nothing could be further from the truth. The key people in Vote Leave wanted and want not just what is best for Britain but what is best for all humanity. We want more international cooperation, not less. The problem with the EU is not that it is about international cooperation but that it is so bad at it and actually undermines it.

Britain leaving forces those with power to ask: how can all European countries trade freely and cooperate without subscribing to Monnet’s bureaucratic centralism? This will help Europe in the long-term. To those who favour this bureaucratic centralism and uniformity, reflect on the different trajectories of Europe and China post-Renaissance. In Europe, regulatory competition (so Columbus could chase funding in Spain after rejection in Portugal) brought immense gains. In China, centrally directed uniformity led to centuries of stagnation. America’s model of competitive federalism created by the founding fathers has been a far more effective engine of civilisation, growth, and new knowledge than the Monnet-Delors Single Market model.

If Britain were to focus on science and education with huge resources and a new-found seriousness, then this regulatory diversity would help not just Britain but all Europe and the global science community. We could make Britain the best place in the world to be for those who can invent the future. Like Alan Kay and his colleagues, we could create whole new industries. We could call Jeff Bezos and say, ‘Ok Jeff, you want a permanent international manned moon base, let’s talk about who does what, but not with that old rocket technology.’ No country on earth funds science as well as we already know how it could be done — that is something for Britain to do that would create real long-term value for humanity, instead of the ‘punching above our weight’ and ‘special relationship’ bullshit that passes for strategy in London. How we change our domestic institutions is within our power and will have much much greater influence on our long-term future than whatever deal is botched together with Brussels. We have the resources. But can we break the system open? If we don’t then we’re likely to go down the path we were already going down inside the EU, like the deluded Norma Desmond in Sunset Boulevard claiming ‘I am big, it’s the pictures that got small.’

*

Vote Leave and ‘good will’

Although Vote Leave was enmeshed in a sort of collective lunacy we managed, barely, to fend it off from the inner working of the campaign. Much of my job (sadly) was just trying to maintain a cordon around the core team so they could deliver the campaign with as little disruption as possible. We managed this because among the core people we had great good will. The stories of the campaign focus on the lunacy, but the people who really made it work remember the goodwill.

A year ago tonight I was sitting alone in a room thinking ‘we’ve won, now…’ when the walls started rumbling. At first I couldn’t make it out then, as Tim Shipman tells the story in his definitive book on the campaign, I heard ‘Dom, Dom, DOM’ — the team had declared victory. I went next door…

Thanks to everybody who sacrificed something. As I said that night and as I said in my long blog on the campaign, I’ve been given credit I don’t deserve and which rightly belongs to others — Cleo Watson, Richard ‘Ricardo’ Howell, Brother Starkie, Oliver Lewis, Lord Suart et al. Now, let’s think about what should come next…

 

Watch Alan Kay explain how to invent the future HERE and HERE.


Ps. Kay also points out that the real computer revolution won’t happen until people fulfil the original vision of enabling children to use this powerful way of thinking:

‘The real printing revolution was a qualitative change in thought and argument that lagged the hardware inventions by almost two centuries. The special quality of computers is their ability to rapidly simulate arbitrary descriptions, and the real computer revolution won’t happen until children can learn to read, write, argue and think in this powerful new way. We should all try to make this happen much sooner than 200 or even 20 more years!’

Almost nobody in education policy is aware of the educational context for the ARPA/PARC project which also speaks volumes about the abysmal field of ‘education research/policy’.

* Re the US literacy statistic, cf. A First Look at the Literacy of America’s Adults in the 21st Century, National Assessment of Adult Literacy, U.S. Dept of Education, NCES 2006.

 

 

 

Complexity and Prediction Part V: The crisis of mathematical paradoxes, Gödel, Turing and the basis of computing

Before the referendum I started a series of blogs and notes exploring the themes of complexity and prediction. This was part of a project with two main aims: first, to sketch a new approach to education and training in general but particularly for those who go on to make important decisions in political institutions and, second, to suggest a new approach to political priorities in which progress with education and science becomes a central focus for the British state. The two are entangled: progress with each will hopefully encourage progress with the other.

I was working on this paper when I suddenly got sidetracked by the referendum and have just looked at it again for the first time in about two years.

The paper concerns a fascinating episode in the history of ideas that saw the most esoteric and unpractical field, mathematical logic, spawn a revolutionary technology, the modern computer. NB. a great lesson to science funders: it’s a great mistake to cut funding on theory and assume that you’ll get more bang for buck from ‘applications’.

Apart from its inherent fascination, knowing something of the history is helpful for anybody interested in the state-of-the-art in predicting complex systems which involves the intersection between different fields including: maths, computer science, economics, cognitive science, and artificial intelligence. The books on it are either technical, and therefore inaccessible to ~100% of the population, or non-chronological so it is impossible for someone like me to get a clear picture of how the story unfolded.

Further, there are few if any very deep ideas in maths or science that are so misunderstood and abused as Gödel’s results. As Alan Sokal, author of the brilliant hoax exposing post-modernist academics, said, ‘Gödel’s theorem is an inexhaustible source of intellectual abuses.’ I have tried to make clear some of these using the best book available by Franzen, which explains why almost everything you read about it is wrong. If even Stephen Hawking can cock it up, the rest of us should be particularly careful.

I sketched these notes as I tried to pull together the story from many different books. I hope they are useful particularly for some 15-25 year-olds who like chronological accounts about ideas. I tried to put the notes together in the way that I wish I had been able to read at that age. I tried hard to eliminate errors but they are inevitable given how far I am from being competent to write about such things. I wish someone who is competent would do it properly. It would take time I don’t now have to go through and finish it the way I originally intended to so I will just post it as it was 2 years ago when I got calls saying ‘about this referendum…’

The only change I think I have made since May 2015 is to shove in some notes from a great essay later that year by the man who wrote the textbook on quantum computers, Michael Nielsen, which would be useful to read as an introduction or instead, HERE.

As always on this blog there is not a single original thought and any value comes from the time I have spent condensing the work of others to save you the time. Please leave corrections in comments.

The PDF of the paper is HERE (amended since first publication to correct an error, see Comments).

 

‘Gödel’s achievement in modern logic is singular and monumental – indeed it is more than a monument, it is a land mark which will remain visible far in space and time.’  John von Neumann.

‘Einstein had often told me that in the late years of his life he has continually sought Gödel’s company in order to have discussions with him. Once he said to me that his own work no longer meant much, that he came to the Institute merely in order to have the privilege of walking home with Gödel.’ Oskar Morgenstern (co-author with von Neumann of the first major work on Game Theory).

‘The world is rational’, Kurt Gödel.

Specialist maths schools – some facts

The news reports that the Government will try to promote more ‘specialist maths schools’ similar to the King’s College and Exeter schools.

The idea for these schools came when I read about Perelman, the Russian mathematician who in 2003 suddenly posted on arXiv a solution to the Poincaré Conjecture, one of the most important open problems in mathematics. Perelman went to one of the famous Russian specialist maths schools that were set up by one of the most important mathematicians of the 20th Century, Kolmogorov.

I thought – a) given the fall in standards in maths and physics because of the corruption of the curriculum and exams started by the Tories and continued by Blair, b) the way in which proper teaching of advanced maths and physics is increasingly limited to a tiny number of schools many of which are private, and c) the huge gains for our civilisation from the proper education of the unusual small fraction of children who are very gifted in maths and physics, why not try to set up something similar.

Gove’s team therefore pushed the idea through the DfE. Dean Acheson, US Secretary of State, said, ‘I have long been the advocate of the heretical view that, whatever political scientists might say, policy in this country is made, as often as not, by the necessity of finding something to say for an important figure committed to speak without a prearranged subject.’ This is quite true (it also explains a lot about how Monnet created the ECSC and EEC). Many things that the Gove team did relied on this. We prepared the maths school idea and waited our chance. Sure enough, the word came through from Downing Street – ‘the Chancellor needs an announcement for the Budget, something on science’. We gave them this, he announced it, and bureaucratic resistance was largely broken.

If interested in some details, then look at pages 75ff of my 2013 essay for useful links. Other countries have successfully pursued similar ideas, including France for a couple of centuries and Singapore recently.

One of the interesting aspects of trying to get them going was the way in which a) the official ‘education world’ loathed not just the idea but also the idea about the idea – they hated thinking about ‘very high ability’ and specialist teaching; b) when I visited maths departments they all knew about these schools because university departments in the West employ a large number of people who were educated in these schools but they all said ‘we can’t help you with this even though it’s a good idea because we’d be killed politically for supporting “elitism” [fingers doing quote marks in the air], good luck I hope you succeed but we’ll probably attack you on the record.’ They mostly did.

The only reason why the King’s project happened is because Alison Wolf made it a personal crusade to defeat all the entropic forces that elsewhere killed the idea (with the exception of Exeter). Without her it would have had no chance. I found few equivalents elsewhere and where I did they were smashed by their VCs.

A few points…

1) Kolmogorov-type schools are a particular thing. They undoubtedly work. But they are aimed at a small fraction of the population. Given what the products of these schools go on to contribute to human civilisation they are extraordinarily cheap. They are also often a refuge for children who have a terrible time in normal schools. If they were as different to normal kids in a negative sense as they are in a positive sense then there would be no argument about whether they have ‘special needs’.

2) Don’t believe the rubbish in things like Gladwell’s book about maths and IQ. There is now very good data on this particularly in the form of the unprecedented SMPY multi-decade study. Even a short crude test at 11-13 gives very good predictions of who is likely to be very good at maths/physics. Further there is a strong correlation between performance at the top 1% / 1:1,000 / 1:10,000 level and many outcomes in later life such as getting a doctorate, a patent, writing a paper in Science and Nature, high income, health etc. The education world has been ~100% committed to rejecting the science of this subject though this resistance is cracking.

This chart shows the SMPY results (maths ability at 13) for the top 1% of maths ability broken down into quartiles 1-4: the top quartile of the top 1% clearly outperforms viz tenure, publication and patent rates.  

screenshot-2017-01-23-11-53-01

3) The arguments for Kolmogorov schools do not translate to arguments for selection in general – ie. they are specific to the subject. It is the structure of maths and the nature of the brain that allows very young people to make rapid progress. These features are not there for English, history and so on. I am not wading into the grammar school argument on either side – I am just pointing out a fact that the arguments for such maths schools are clear but should not be confused with the wider arguments over selection that involve complicated trade-offs. People on both sides of the grammar debate should, if rational, be able to support this policy.

4) These schools are not ‘maths hot houses’. Kolmogorov took the children to see  Shakespeare plays, music and so on. It is important to note that teaching English and other subjects is normal – other than you are obviously dealing with unusually bright children. If these children are not in specialist schools, then the solution is a) specialist maths teaching (including help from university-level mathematicians) and b) keeping other aspects of their education normal. Arguably the greatest mathematician in the world, Terry Tao, had wise parents and enjoyed this combination. So it is of course possible to educate such children without specialist schools but the risks are higher that either parents or teachers cock it up.

5) Extended wisely across Britain they could have big benefits not just for those children and elite universities but they could also play an important role in raising standards generally in their area by being a focus for high quality empirical training. One of the worst aspects of the education world is the combination of low quality training and resistance to experiments. This has improved since the Gove reforms but the world of education research continues to be dominated by what Feynman called ‘cargo cult science’.

6) We also worked with a physicist at Cambridge, Professor Mark Warner, to set up a project to improve the quality of 6th form physics. This project has been a great success thanks to his extraordinary efforts and the enthusiasm of young Cambridge physicists. Thousands of questions have been answered on their online platform from many schools. This project gives kids the chance to learn proper problem solving – that is the core skill that the corruption of the exam system has devalued and increasingly pushed into a ghetto of of private education. Needless to say the education world also was hostile to this project. Anything that suggests that we can do much much better is generally hated by all elements of the bureaucracy, including even elements such as the Institute of Physics that supposedly exist to support exactly this. A handful of officials helped us push through projects like this and of course most of them have since left Whitehall in disgust, thus does the system protect itself against improvement while promoting the worst people.

7) This idea connects to a broader idea. Kids anywhere in the state system should be able to apply some form of voucher to buy high quality advanced teaching from outside their school for a wide range of serious subjects from music to physics.

8) One of the few projects that the Gove team tried and failed to get going was to break the grip of GCSEs on state schools (Cameron sided with Clegg and although we cheated a huge amount through the system we hit a wall on this project). It is extremely wasteful for the system and boring for many children for them to be focused on existing exams that do not develop serious skills. Maths already has the STEP paper. There should be equivalents in other subjects at age 16. There is nothing that the bureaucracy will fight harder than this and it will probably only happen if excellent private schools decide to do it themselves and political pressure then forces the Government to allow state schools to do them.

Any journalists who want to speak to people about this should try to speak to Dan Abramson (the head of the King’s school), Alison Wolf, or Alexander Borovik (a mathematician at Manchester University who attended one of these schools in Russia).

It is hopeful that No10 is backing this idea but of course they will face determined resistance. It will only happen if at least one special adviser in the DfE makes it a priority and has the support of No10 so officials know they might as well fight about other things…


This is the most interesting comment probably ever left on this blog and it is much more interesting than the blog itself so I have copied it below. It is made by Borovik, mentioned above, who attended one of these schools in Russia and knows many who attended similar…

‘There is one more aspect of (high level) selective specialist mathematics education that is unknown outside the professional community of mathematicians.

I am not an expert on “gifted and talented” education. On the other hand, I spent my life surrounded by people who got exclusive academically selective education in mathematics and physics, whether it was in the Lavrentiev School in Siberia, or Lycée Louis-le-Grand in Paris, or Fazekas in Budapest, or Galatasaray Lisesi (aka Lycée de Galatasaray) in Istanbul — the list can be continued.

The schools have nothing in common, with the exception of being unique, each one in its own way.

I had research collaborators and co-authors from each of the schools that Ilisted above. Why was it so easy for us to find a common language?

Well, the explanation can be found in the words of Stanislas Dehaene, the leading researcher of neurophysiology of mathematical thinking:

“We have to do mathematics using the brain which evolved 30 000 years ago for survival in the African savanna.”

In humans, the speed of totally controlled mental operations is at most 16 bits per second. Standard school maths education trains children to work at that speed.

The visual processing module in the brain crunches 10,000,000,000 bits per second.

I offer a simple thought experiment to the readers who have some knowledge of school level geometry.

Imagine that you are given a triangle; mentally rotate it about the longest side. What is the resulting solid of revolution? Describe it. And then try to reflect: where the answer came from?

The best kept secret of mathematics: it is done by subconsciousness.

Mathematics is a language for communication with subconsciousness.

There are four conversants in a conversation between two mathematicians: two people and two their “inner”, “intuitive” brains.

When mathematicians talk about mathematics face-to-face, they
* frequently use language which is very fluid and informal;
* improvised on the spot;
* includes pauses (for a lay observer—very strange and awkwardly timed) for absorbtion of thought;
* has almost nothing in common with standardised mathematics “in print”.

Mathematician is trying to convey a message from his “intuitive brain” directly to his colleagues’ “intuitive brain”.

Alumni of high level specialist mathematics schools are “birds of feather” because they have been initiated into this mode of communication at the most susceptible age, as teenagers, at the peak of intensity of their socialisation / shaping group identity stream of self-actualisation.

In that aspect, mathematics is not much different from arts. Part of the skills that children get in music schools, acting schools, dancing school, and art schools is the ability to talk about music, acting, dancing, art with intuitive, subconscious parts of their minds — and with their peers, in a secret language which is not recognised (and perhaps not even registered) by uninitiated.

However, specialist mathematics schools form a continuous spectrum from just ordinary, with standard syllabus, but good schools with good maths teachers to the likes of Louis-le-Grand and Fazekas. My comments apply mostly to the top end of the spectrum. I have a feeling that the Green Paper is less ambitious and does not call for setting up mathematics boarding schools using Chetham’s School of Music as a model. However, middle tier maths school could also be very useful — if they are set up with realistic expectations, properly supported, and have strong connections with universities.’

A Borovik

 

 

Unrecognised simplicities of effective action #1: expertise and a quadrillion dollar business

‘The combination of physics and politics could render the surface of the earth uninhabitable.’ John von Neumann.

Introduction

This series of blogs considers:

  • the difference between fields with genuine expertise, such as fighting and physics, and fields dominated by bogus expertise, such as politics and economic forecasting;
  • the big big problem we face – the world is ‘undersized and underorganised’ because of a collision between four forces: 1) our technological civilisation is inherently fragile and vulnerable to shocks, 2) the knowledge it generates is inherently dangerous, 3) our evolved instincts predispose us to aggression and misunderstanding, and 4) there is a profound mismatch between the scale and speed of destruction our knowledge can cause and the quality of individual and institutional decision-making in ‘mission critical’ institutions – our institutions are similar to those that failed so spectacularly in summer 1914 yet they face crises moving at least ~103 times faster and involving ~106 times more destructive power able to kill ~1010 people;
  • what classic texts and case studies suggest about the unrecognised simplicities of effective action to improve the selection, education, training, and management of vital decision-makers to improve dramatically, reliably, and quantifiably the quality of individual and institutional decisions (particularly 1) the ability to make accurate predictions and b) the quality of feedback);
  • how we can change incentives to aim a much bigger fraction of the most able people at the most important problems;
  • what tools and technologies can help decision-makers cope with complexity.

[I’ve tweaked a couple of things in response to this blog by physicist Steve Hsu.]

*

Summary of the big big problem

The investor Peter Thiel (founder of PayPal and Palantir, early investor in Facebook) asks people in job interviews: what billion (109) dollar business is nobody building? The most successful investor in world history, Warren Buffett, illustrated what a quadrillion (1015) dollar business might look like in his 50th anniversary letter to Berkshire Hathaway investors.

‘There is, however, one clear, present and enduring danger to Berkshire against which Charlie and I are powerless. That threat to Berkshire is also the major threat our citizenry faces: a “successful” … cyber, biological, nuclear or chemical attack on the United States… The probability of such mass destruction in any given year is likely very small… Nevertheless, what’s a small probability in a short period approaches certainty in the longer run. (If there is only one chance in thirty of an event occurring in a given year, the likelihood of it occurring at least once in a century is 96.6%.) The added bad news is that there will forever be people and organizations and perhaps even nations that would like to inflict maximum damage on our country. Their means of doing so have increased exponentially during my lifetime. “Innovation” has its dark side.

‘There is no way for American corporations or their investors to shed this risk. If an event occurs in the U.S. that leads to mass devastation, the value of all equity investments will almost certainly be decimated.

‘No one knows what “the day after” will look like. I think, however, that Einstein’s 1949 appraisal remains apt: “I know not with what weapons World War III will be fought, but World War IV will be fought with sticks and stones.”’

Politics is profoundly nonlinear. (I have written a series of blogs about complexity and prediction HERE which are useful background for those interested.) Changing the course of European history via the referendum only involved about 10 crucial people controlling ~£107  while its effects over ten years could be on the scale of ~108 – 10people and ~£1012: like many episodes in history the resources put into it are extremely nonlinear in relation to the potential branching histories it creates. Errors dealing with Germany in 1914 and 1939 were costly on the scale of ~100,000,000 (108) lives. If we carry on with normal human history – that is, international relations defined as out-groups competing violently – and combine this with modern technology then it is extremely likely that we will have a disaster on the scale of billions (109) or even all humans (~1010). The ultimate disaster would kill about 100 times more people than our failure with Germany. Our destructive power is already much more than 100 times greater than it was then: nuclear weapons increased destructiveness by roughly a factor of a million.

Even if we dodge this particular bullet there are many others lurking. New genetic engineering techniques such as CRISPR allow radical possibilities for re-engineering organisms including humans in ways thought of as science fiction only a decade ago. We will soon be able to remake human nature itself. CRISPR-enabled ‘gene drives’ enable us to make changes to the germ-line of organisms permanent such that changes spread through the entire wild population, including making species extinct on demand. Unlike nuclear weapons such technologies are not complex, expensive, and able to be kept secret for a long time. The world’s leading experts predict that people will be making them cheaply at home soon – perhaps they already are. These developments have been driven by exponential progress much faster than Moore’s Law reducing the cost of DNA sequencing per genome from ~$108 to ~$10in roughly 15 years.

screenshot-2017-01-16-12-24-13

It is already practically possible to deploy a cheap, autonomous, and anonymous drone with facial-recognition software and a one gram shaped-charge to identify a relevant face and blow it up. Military logic is driving autonomy. For example, 1) the explosion in the volume of drone surveillance video (from 71 hours in 2004 to 300,000 hours in 2011 to millions of hours now) requires automated analysis, and 2) jamming and spoofing of drones strongly incentivise a push for autonomy. It is unlikely that promises to ‘keep humans in the loop’ will be kept. It is likely that state and non-state actors will deploy low-cost drone swarms using machine learning to automate the ‘find-fix-finish’ cycle now controlled by humans. (See HERE for a video just released for one such program and imagine the capability when they carry their own communication and logistics network with them.)

In the medium-term, many billions are being spent on finding the secrets of general intelligence. We know this secret is encoded somewhere in the roughly 125 million ‘bits’ of information that is the rough difference between the genome that produces the human brain and the genome that produces the chimp brain. This search space is remarkably small – the equivalent of just 25 million English words or 30 copies of the King James Bible. There is no fundamental barrier to decoding this information and it is possible that the ultimate secret could be described relatively simply (cf. this great essay by physicist Michael Nielsen). One of the world’s leading experts has told me they think a large proportion of this problem could be solved in about a decade with a few tens of billions and something like an Apollo programme level of determination.

Not only is our destructive and disruptive power still getting bigger quickly – it is also getting cheaper and faster every year. The change in speed adds another dimension to the problem. In the period between the Archduke’s murder and the outbreak of World War I a month later it is striking how general failures of individuals and institutions were compounded by the way in which events moved much faster than the ‘mission critical’ institutions could cope with such that soon everyone was behind the pace, telegrams were read in the wrong order and so on. The crisis leading to World War I was about 30 days from the assassination to the start of general war – about 700 hours. The timescale for deciding what to do between receiving a warning of nuclear missile launch and deciding to launch yourself is less than half an hour and the President’s decision time is less than this, maybe just minutes. This is a speedup factor of at least 103.

Economic crises already occur far faster than human brains can cope with. The financial system has made a transition from people shouting at each other to a a system dominated by high frequency ‘algorithmic trading’ (HFT), i.e. machine intelligence applied to robot trading with vast volumes traded on a global spatial scale and a microsecond (10-6) temporal scale far beyond the monitoring, understanding, or control of regulators and politicians. There is even competition for computer trading bases in specific locations based on calculations of Special Relativity as the speed of light becomes a factor in minimising trade delays (cf. Relativistic statistical arbitrage, Wissner-Gross). ‘The Flash Crash’ of 9 May 2010 saw the Dow lose hundreds of points in minutes. Mini ‘flash crashes’ now blow up and die out faster than humans can notice. Given our institutions cannot cope with economic decisions made at ‘human speed’, a fortiori they cannot cope with decisions made at ‘robot speed’. There is scope for worse disasters than 2008 which would further damage the moral credibility of decentralised markets and provide huge chances for extremist political entrepreneurs to exploit. (* See endnote.)

What about the individuals and institutions that are supposed to cope with all this?

Our brains have not evolved much in thousands of years and are subject to all sorts of constraints including evolved heuristics that lead to misunderstanding, delusion, and violence particularly under pressure. There is a terrible mismatch between the sort of people that routinely dominate mission critical political institutions and the sort of people we need: high-ish IQ (we need more people >145 (+3SD) while almost everybody important is between 115-130 (+1 or 2SD)), a robust toolkit for not fooling yourself including quantitative problem-solving (almost totally absent at the apex of relevant institutions), determination, management skills, relevant experience, and ethics. While our ancestor chiefs at least had some intuitive feel for important variables like agriculture and cavalry our contemporary chiefs (and those in the media responsible for scrutiny of decisions) generally do not understand their equivalents, and are often less experienced in managing complex organisations than their predecessors.

The national institutions we have to deal with such crises are pretty similar to those that failed so spectacularly in summer 1914 yet they face crises moving at least ~103 times faster and involving ~106 times more destructive power able to kill ~1010 people. The international institutions developed post-1945 (UN, EU etc) contribute little to solving the biggest problems and in many ways make them worse. These institutions fail constantly and do not  – cannot – learn much.

If we keep having crises like we have experienced over the past century then this combination of problems pushes the probability of catastrophe towards ‘overwhelmingly likely’.

*

What Is To be Done? There’s plenty of room at the top

‘In a knowledge-rich world, progress does not lie in the direction of reading information faster, writing it faster, and storing more of it. Progress lies in the direction of extracting and exploiting the patterns of the world… And that progress will depend on … our ability to devise better and more powerful thinking programs for man and machine.’ Herbert Simon, Designing Organizations for an Information-rich World, 1969.

‘Fascinating that the same problems recur time after time, in almost every program, and that the management of the program, whether it happened to be government or industry, continues to avoid reality.’ George Mueller, pioneer of ‘systems engineering’ and ‘systems management’ and the man most responsible for the success of the 1969 moon landing.

Somehow the world has to make a series of extremely traumatic and dangerous transitions over the next 20 years. The main transition needed is:

Embed reliably the unrecognised simplicities of high performance teams (HPTs), including personnel selection and training, in ‘mission critical’ institutions while simultaneously developing a focused project that radically improves the prospects for international cooperation and new forms of political organisation beyond competing nation states.

Big progress on this problem would automatically and for free bring big progress on other big problems. It could improve (even save) billions of lives and save a quadrillion dollars (~$1015). If we avoid disasters then the error-correcting institutions of markets and science will, patchily, spread peace, prosperity, and learning. We will make big improvements with public services and other aspects of ‘normal’ government. We will have a healthier political culture in which representative institutions, markets serving the public (not looters), and international cooperation are stronger.

Can a big jump in performance – ‘better and more powerful thinking programs for man and machine’ – somehow be systematised?

Feynman once gave a talk titled ‘There’s plenty of room at the bottom’ about the huge performance improvements possible if we could learn to do engineering at the atomic scale – what is now called nanotechnology. There is also ‘plenty of room at the top’ of political structures for huge improvements in performance. As I explained recently, the victory of the Leave campaign owed more to the fundamental dysfunction of the British Establishment than it did to any brilliance from Vote Leave. Despite having the support of practically every force with power and money in the world (including the main broadcasters) and controlling the timing and legal regulation of the referendum, they blew it. This was good if you support Leave but just how easily the whole system could be taken down should be frightening for everybody .

Creating high performance teams is obviously hard but in what ways is it really hard? It is not hard in the same sense that some things are hard like discovering profound new mathematical knowledge. HPTs do not require profound new knowledge. We have been able to read the basic lessons in classics for over two thousand years. We can see relevant examples all around us of individuals and teams showing huge gains in effectiveness.

The real obstacle is not financial. The financial resources needed are remarkably low and the return on small investments could be incalculably vast. We could significantly improve the decisions of the most powerful 100 people in the UK or the world for less than a million dollars (~£106) and a decade-long project on a scale of just ~£107 could have dramatic effects.

The real obstacle is not a huge task of public persuasion – quite the opposite. A government that tried in a disciplined way to do this would attract huge public support. (I’ve polled some ideas and am confident about this.) Political parties are locked in a game that in trying to win in conventional ways leads to the public despising them. Ironically if a party (established or new) forgets this game and makes the public the target of extreme intelligent focus then it would not only make the world better but would trounce their opponents.

The real obstacle is not a need for breakthrough technologies though technology could help. As Colonel Boyd used to shout, ‘People, ideas, machines – in that order!’

The real obstacle is that although we can all learn and study HPTs it is extremely hard to put this learning to practical use and sustain it against all the forces of entropy that constantly operate to degrade high performance once the original people have gone. HPTs are episodic. They seem to come out of nowhere, shock people, then vanish with the rare individuals. People write about them and many talk about learning from them but in fact almost nobody ever learns from them – apart, perhaps, from those very rare people who did not need to learn – and nobody has found a method to embed this learning reliably and systematically in institutions that can maintain it. The Prussian General Staff remained operationally brilliant but in other ways went badly wrong after the death of the elder Moltke. When George Mueller left NASA it reverted to what it had been before he arrived – management chaos. All the best companies quickly go downhill after the departure of people like Bill Gates – even when such very able people have tried very very hard to avoid exactly this problem.

Charlie Munger, half of the most successful investment team in world history, has a great phrase he uses to explain their success that gets to the heart of this problem:

‘There isn’t one novel thought in all of how Berkshire [Hathaway] is run. It’s all about … exploiting unrecognized simplicities… It’s a community of like-minded people, and that makes most decisions into no-brainers. Warren [Buffett] and I aren’t prodigies. We can’t play chess blindfolded or be concert pianists. But the results are prodigious, because we have a temperamental advantage that more than compensates for a lack of IQ points.’

The simplicities that bring high performance in general, not just in investing, are largely unrecognised because they conflict with many evolved instincts and are therefore psychologically very hard to implement. The principles of the Buffett-Munger success are clear – they have even gone to great pains to explain them and what the rest of us should do – and the results are clear yet still almost nobody really listens to them and above average intelligence people instead constantly put their money into active fund management that is proved to destroy wealth every year!

Most people think they are already implementing these lessons and usually strongly reject the idea that they are not. This means that just explaining things is very unlikely to work:

‘I’d say the history that Charlie [Munger] and I have had of persuading decent, intelligent people who we thought were doing unintelligent things to change their course of action has been poor.’ Buffett.

Even more worrying, it is extremely hard to take over organisations that are not run right and make them excellent.

‘We really don’t believe in buying into organisations to change them.’ Buffett.

If people won’t listen to the world’s most successful investor in history on his own subject, and even he finds it too hard to take over failing businesses and turn them around, how likely is it that politicians and officials incentivised to keep things as they are will listen to ideas about how to do things better? How likely is it that a team can take over broken government institutions and make them dramatically better in a way that outlasts the people who do it? Bureaucracies are extraordinarily resistant to learning. Even after the debacles of 9/11 and the Iraq War, costing many lives and trillions of dollars, and even after the 2008 Crash, the security and financial bureaucracies in America and Europe are essentially the same and operate on the same principles.

Buffett’s success is partly due to his discipline in sticking within what he and Munger call their ‘circle of competence’. Within this circle they have proved the wisdom of avoiding trying to persuade people to change their minds and avoiding trying to fix broken institutions.

This option is not available in politics. The Enlightenment and the scientific revolution give us no choice but to try to persuade people and try to fix or replace broken institutions. In general ‘it is better to undertake revolution than undergo it’. How might we go about it? What can people who do not have any significant power inside the system do? What international projects are most likely to spark the sort of big changes in attitude we urgently need?

This is the first of a series. I will keep it separate from the series on the EU referendum though it is connected in the sense that I spent a year on the referendum in the belief that winning it was a necessary though not sufficient condition for Britain to play a part in improving the quality of government dramatically and improving the probability of avoiding the disasters that will happen if politics follows a normal path. I intended to implement some of these ideas in Downing Street if the Boris-Gove team had not blown up. The more I study this issue the more confident I am that dramatic improvements are possible and the more pessimistic I am that they will happen soon enough.

Please leave comments and corrections…

* A new transatlantic cable recently opened for financial trading. Its cost? £300 million. Its advantage? It shaves 2.6 milliseconds off the latency of financial trades. Innovative groups are discussing the application of military laser technology, unmanned drones circling the earth acting as routers, and even the use of neutrino communication (because neutrinos can go straight through the earth just as zillions pass through your body every second without colliding with its atoms) – cf. this recent survey in Nature.

Bureaucratic cancer and the sabotage of A Level reform

‘Bureaucracy is cancerous in head and limbs; only its belly is sound and the laws it excretes are the most straightforward shit in the world… With this bureaucracy including the judges on the bench we can have press laws written by angels and they cannot lift us from the swamp. With bad laws and good civil servants one can still govern, with bad civil servants the best laws cannot help.’ Otto von Bismarck, 1850.

‘I had the agreement in principle of my colleagues; I had the agreement in principle of the entire Landtag; and yet, although minister-president, I found myself absolutely unable to bring the matter one step further along. Agreement does not help me at all when passive resistance – from what direction in this complicated machine is impossible to learn – is conducted with such success that I am scarcely in a position after two to three years to answer even the most basic questions.’ Otto von Bismarck, 1878.

If the most effective political operator of the modern world frequently complained about the difficulty of enforcing policy against a hostile bureaucracy, we should not be surprised if similar problems recur over and over again.

Here is an interesting example of how education policy is made and how Whitehall works.

In 2012, we announced that the DfE would step back from controlling A Levels and give universities control. (Allegra Stratton ran the original story on Newsnight.) The main mechanism was ALCAB. It was a nightmare to set up partly because although subject experts very much wanted to be involved the administrators who control universities wanted to stay out of the controversy and said to us in the DfE ‘we don’t want to have to say publicly that A Level papers are bad’.

We forced ALCAB to be created. MG and I spent a lot of time in awful meetings forcing it through. Its main role was supposed to be an annual review of specific A Level papers so that professors XYZ could say ‘hopeless question in the Edexcel physics paper, it gets the definition of entropy wrong again, it fails to test XXX’ etc.

The DfE has closed this committee down. It emerged via this Times Higher Education story.

I pointed a few hacks to it. They have called the DfE press office and spads. Both of those entities were given a line from officials saying ‘ALCAB’s work is done, no story here’. (Cf. Forsyth’s blog here.)

This is a lie. The main role was an annual review process. This should have been conducted this year and 2016 in preparation for new A Levels in 2017. It was envisaged as a permanent role. Interestingly, the letters completely elide this main role out of existence and present ALCAB as having only a temporary role.

Now this annual review won’t happen.

This is almost a Jedi-level operation from DfE officials. The DfE hated giving away control, obviously, and hated ALCAB. The very point of the process – a sword of Damocles in the form of eminent professors saying ‘crap questions’ each year – was supposed to force the DfE, exam boards, and Ofqual to raise their game. You can imagine how popular this was. Now the situation will revert to the status quo – the DfE firmly in charge and those pesky professors who point out things like – specific papers do not test the maths skills in the specifications – are happily excluded, with no ‘unhelpful’ public scrutiny of standards.

I very much doubt that poor Nicky Morgan Nicky Morgan [*see end] realises what she has done. It was probably a letter buried deep in her box weeks ago that she had no reason to suspect meant she was being used to subvert reform and entrench Whitehall’s power. It is impossible for a new minister to spot all such things – you don’t know what you don’t know. We can also safely bet that No10 has not the faintest idea about what ALCAB is or what the annual review process was supposed to do.

This is how Whitehall closes down threats to its power. Although it is systemically incompetent viz policy and implementation, its real focus is on its own power, jobs, and money. To these, it pays careful attention and deploys its real skills.

It is possible that the hard struggle to improve A Levels and remove politicians’ and Whitehall’s grip of them is now substantially lost, without the MPs having a clue as to why and the details lost in a miasma of untraceable decisions and discussions.

Nicky Morgan and her spads should ask Rose (head of private office) and Wormald (Perm Sec) not just ‘how did this happen?’, but also ‘why were we and the press office given lies to tell the media?’ They would also be well advised to make clear that a repetition of this fancy footwork will mean someone fired. But of course this will have little effect. The officials are lining up their holidays and their own plans for the future, safe in the happy knowledge that whoever ‘wins’ the election, they will remain in charge. The MPs of all parties are largely content for this situation to continue. In the focus groups, swing voters will continue to say ‘they’re all the same’ with much more accuracy than they realise, but few in Westminster are really listening and even fewer know what is to be done…

I will blog a few reflections on No10’s ‘schools week’ tomorrow. NB. notice how, just as I wrote in The Hollow Men, this No10 ‘schools week’ is like all the others – two days of rubbish gimmicks, a self-inflicted cockup (‘real terms cuts to the budget’), followed by silence such that by Friday the 8 people who knew it was ‘schools week’ have themselves forgotten? Plus ca change…

Ps. If you want details on the devaluation of exams since 1988, and therefore why the annual review process was so important, read THIS.


 

UPDATE. Some have asked ‘how much confidence did you have in ALCAB doing a good job?’ Answer? Initially not much. They are all under huge pressure to say everything is fine. Initially for example, despite physics departments across the country  complaining about the removal of calculus from Physics A Level (complaints that practically none of them will repeat publicly because of fear of their VC office), it did not look like ALCAB would be much use and they rejected calls from various professors I know on this subject. There is massive political pressure to focus exclusively on the numbers taking an A Level rather than the quality  of the A Level.

But my hope was that by creating something that would be seen as the ‘voice of the university subject experts’, they would have to listen and adapt in order to maintain credibility and avoid embarrassing challenges. There are more and more enraged academics fed up of VC offices lying to the media and misrepresenting academics’ opinions. I thought that creating something would push the debate in increasingly sensible directions where the emphasis would be on the skills needed on arrival at university. Now, everything to do with A Levels is dominated by political not educational concerns about the numbers doing them and ‘access’. This has helped corrupt the exam system. If we had professors of physics, French, music etc every year publicly humiliating exam boards for errors, this would soon improve things from a low base and make it much harder for MPs and Whitehall to keep corrupting public exams.

[* I wrote ‘poor Nicky Morgan’ with the feeling – poor her, I know what it’s like to be pottering around in the DfE dealing with all sorts of problems before the horror of Question Time then someone walks in with a new bigger problem… But a few people email to say it sounds patronising which was not deliberate, hence deletion…]