On the referendum #33: High performance government, ‘cognitive technologies’, Michael Nielsen, Bret Victor, & ‘Seeing Rooms’

On the referendum #33: High performance government, ‘cognitive technologies’, Michael Nielsen, Bret Victor, & ‘Seeing Rooms’

‘People, ideas, machines — in that order!’ Colonel Boyd.

‘The main thing that’s needed is simply the recognition of how important seeing is, and the will to do something about it.’ Bret Victor.

‘[T]he transfer of an entirely new and quite different framework for thinking about, designing, and using information systems … is immensely more difficult than transferring technology.’ Robert Taylor, one of the handful most responsible for the creation of the internet and personal computing, and in inspiration to Bret Victor.

‘[M]uch of our intellectual elite who think they have “the solutions” have actually cut themselves off from understanding the basis for much of the most important human progress.’ Michael Nielsen, physicist. 

Introduction

This blog looks at an intersection of decision-making, technology, high performance teams and government. It sketches some ideas of physicist Michael Nielsen about cognitive technologies and of computer visionary Bret Victor about the creation of dynamic tools to help understand complex systems and ‘argue with evidence’, such as tools for authoring dynamic documents’, and ‘Seeing Rooms’ for decision-makers — i.e rooms designed to support decisions in complex environments. It compares normal Cabinet rooms, such as that used in summer 1914 or October 1962, with state-of-the-art Seeing Rooms. There is very powerful feedback between: a) creating dynamic tools to see complex systems deeper (to see inside, see across time, and see across possibilities), thus making it easier to work with reliable knowledge and interactive quantitative models, semi-automating error-correction etc, and b) the potential for big improvements in the performance of political and government decision-making.

It is relevant to Brexit and anybody thinking ‘how on earth do we escape this nightmare’ but 1) these ideas are not at all dependent on whether you support or oppose Brexit, about which reasonable people disagree, and 2) they are generally applicable to how to improve decision-making — for example, they are relevant to problems like ‘how to make decisions during a fast moving nuclear crisis’ which I blogged about recently, or if you are a journalist ‘what future media could look like to help improve debate of politics’. One of the tools Nielsen discusses is a tool to make memory a choice by embedding learning in long-term memory rather than, as it is for almost all of us, an accident. I know from my days working on education reform in government that it’s almost impossible to exaggerate how little those who work on education policy think about ‘how to improve learning’.

Fields make huge progress when they move from stories (e.g Icarus)  and authority (e.g ‘witch doctor’) to evidence/experiment (e.g physics, wind tunnels) and quantitative models (e.g design of modern aircraft). Political ‘debate’ and the processes of government are largely what they have always been largely conflict over stories and authorities where almost nobody even tries to keep track of the facts/arguments/models they’re supposedly arguing about, or tries to learn from evidence, or tries to infer useful principles from examples of extreme success/failure. We can see much better than people could in the past how to shift towards processes of government being ‘partially rational discussion over facts and models and learning from the best examples of organisational success‘. But one of the most fundamental and striking aspects of government is that practically nobody involved in it has the faintest interest in or knowledge of how to create high performance teams to make decisions amid uncertainty and complexity. This blindness is connected to another fundamental fact: critical institutions (including the senior civil service and the parties) are programmed to fight to stay dysfunctional, they fight to stay closed and avoid learning about high performance, they fight to exclude the most able people.

I wrote about some reasons for this before the referendum (cf. The Hollow Men). The Westminster and Whitehall response was along the lines of ‘natural party of government’, ‘Rolls Royce civil service’ blah blah. But the fact that Cameron, Heywood (the most powerful civil servant) et al did not understand many basic features of how the world works is why I and a few others gambled on the referendum — we knew that the systemic dysfunction of our institutions and the influence of grotesque incompetents provided an opportunity for extreme leverage. 

Since then, after three years in which the parties, No10 and the senior civil service have imploded (after doing the opposite of what Vote Leave said should happen on every aspect of the negotiations) one thing has held steady — Insiders refuse to ask basic questions about the reasons for this implosion, such as: ‘why Heywood didn’t even put together a sane regular weekly meeting schedule and ministers didn’t even notice all the tricks with agendas/minutes etc’, how are decisions really made in No10, why are so many of the people below some cognitive threshold for understanding basic concepts (cf. the current GATT A24 madness), what does it say about Westminster that both the Adonis-Remainers and the Cash-ERGers have become more detached from reality while a large section of the best-educated have effectively run information operations against their own brains to convince themselves of fairy stories about Facebook, Russia and Brexit…

It’s a mix of amusing and depressing — but not surprising to me — to hear Heywood explain HERE how the British state decided it couldn’t match the resources of a single multinational company or a single university in funding people to think about what the future might hold, which is linked to his failure to make serious contingency plans for losing the referendum. And of course Heywood claimed after the referendum that we didn’t need to worry about the civil service because on project management it has ‘nothing to learn’ from the best private companies. The elevation of Heywood in the pantheon of SW1 is the elevation of the courtier-fixer at the expense of the thinker and the manager — the universal praise for him recently is a beautifully eloquent signal that those in charge are the blind leading the blind and SW1 has forgotten skills of high value, the skills of public servants such as Alanbrooke or Michael Quinlan.

This blog is hopefully useful for some of those thinking about a) improving government around the world and/or b) ‘what comes after the coming collapse and reshaping of the British parties, and how to improve drastically the performance of critical institutions?’

Some old colleagues have said ‘Don’t put this stuff on the internet, we don’t want the second referendum mob looking at it.’ Don’t worry! Ideas like this have to be forced down people’s throats practically at gunpoint. Silicon Valley itself has barely absorbed Bret Victor’s ideas so how likely is it that there will be a rush to adopt them by the world of Blair and Grieve?! These guys can’t tell the difference between courtier-fixers and people with models for truly effective action like General Groves (HERE). Not one in a thousand will read a 10,000 word blog on the intersection of management and technology and the few who do will dismiss it as the babbling of a deluded fool, they won’t learn any more than they learned from the 2004 referendum or from Vote Leave. And if I’m wrong? Great. Things will improve fast and a second referendum based on both sides applying lessons from Bret Victor would be dynamite.

NB. Bret Victor’s project, Dynamic Land, is a non-profit. For an amount of money that a government department like the Department for Education loses weekly without any minister realising it’s lost (in the millions per week in my experience because the quality of financial control is so bad), it could provide crucial funding for Victor and help itself. Of course, any minister who proposed such a thing would be told by officials ‘this is illegal under EU procurement law and remember minister that we must obey EU procurement law forever regardless of Brexit’ — something I know from experience officials say to ministers whether it is legal or not when they don’t like something. And after all, ministers meekly accepted the Kafka-esque order from Heywood to prioritise duties of goodwill to the EU under A50 over preparations to leave A50, so habituated had Cameron’s children become to obeying the real deputy prime minister…

Below are 4 sections:

  1. The value found in intersections of fields
  2. Some ideas of Bret Victor
  3. Some ideas of Michael Nielsen
  4. A summary

*

1. Extreme value is often found in the intersection of fields

The legendary Colonel Boyd (he of the ‘OODA loop’) would shout at audiences ‘People, ideas, machines — in that order.‘ Fundamental political problems we face require large improvements in the quality of all three and, harder, systems to integrate all three. Such improvements require looking carefully at the intersection of roughly five entangled areas of study. Extreme value is often found at such intersections.

  • Explore what we know about the selection, education and training of people for high performance (individual/team/organisation) in different fields. We should be selecting people much deeper in the tails of the ability curve — people who are +3 (~1:1,000) or +4 (~1:30,000) standard deviations above average on intelligence, relentless effort, operational ability and so on (now practically entirely absent from the ’50 most powerful people in Britain’). We should  train them in the general art of ‘thinking rationally’ and making decisions amid uncertainty (e.g Munger/Tetlock-style checklists, exercises on SlateStarCodex blog). We should train them in the practical reasons for normal ‘mega-project failure’ and case studies such as the Manhattan Project (General Groves), ICBMs (Bernard Schriever), Apollo (George Mueller), ARPA-PARC (Robert Taylor) that illustrate how the ‘unrecognised simplicities’ of high performance bring extreme success and make them work on such projects before they are responsible for billions rather than putting people like Cameron in charge (after no experience other than bluffing through PPE then PR). NB. China’s leaders have studied these episodes intensely while American and British institutions have actively ‘unlearned’ these lessons.
  • Explore the frontiers of the science of prediction across different fields from physics to weather forecasting to finance and epidemiology. For example, ideas from physics about early warning systems in physical systems have application in many fields, including questions like: to what extent is it possible to predict which news will persist over different timescales, or predict wars from news and social media? There is interesting work combining game theory, machine learning, and Red Teams to predict security threats and improve penetration testing (physical and cyber). The Tetlock/IARPA project showed dramatic performance improvements in political forecasting are possible, contra what people such as Kahneman had thought possible. A recent Nature article by Duncan Watts explained fundamental problems with the way normal social science treats prediction and suggested new approaches — which have been almost entirely ignored by mainstream economists/social scientists. There is vast scope for applying ideas and tools from the physical sciences and data science/AI — largely ignored by mainstream social science, political parties, government bureaucracies and media — to social/political/government problems (as Vote Leave showed in the referendum, though this has been almost totally obscured by all the fake news: clue — it was not ‘microtargeting’).
  • Explore technology and tools. For example, Bret Victor’s work and Michael Nielsen’s work on cognitive technologies. The edge of performance in politics/government will be defined by teams that can combine the ancient ‘unrecognised simplicities of high performance’ with edge-of-the-art technology. No10 is decades behind the pace in old technologies like TV, doesn’t understand simple tools like checklists, and is nowhere with advanced technologies.
  • Explore the frontiers of communication (e.g crisis management, applied psychology). Technology enables people to improve communication with unprecedented speed, scale and iterative testing. It also allows people to wreak chaos with high leverage. The technologies are already beyond the ability of traditional government centralised bureaucracies to cope with. They will develop rapidly such that most such centralised bureaucracies lose more and more control while a few high performance governments use the leverage they bring (c.f China’s combination of mass surveillance, AI, genetic identification, cellphone tracking etc as they desperately scramble to keep control). The better educated think that psychological manipulation is something that happens to ‘the uneducated masses’ but they are extremely deluded — in many ways people like FT pundits are much easier to manipulate, their education actually makes them more susceptible to manipulation, and historically they are the ones who fall for things like Russian fake news (cf. the Guardian and New York Times on Stalin/terror/famine in the 1930s) just as now they fall for fake news about fake news. Despite the centrality of communication to politics it is remarkable how little attention Insiders pay to what works — never mind the question ‘what could work much better?’.  The fact that so much of the media believes total rubbish about social media and Brexit shows that the media is incapable of analysing the intersection of politics and technology but, although it is obviously bad that the media disinforms the public, the only rational planning assumption is that this problem will continue and even get worse. The media cannot explain either the use of TV or traditional polling well, these have been extremely important for over 70 years, and there is no trend towards improvement so a sound planning assumption is surely that the media will do even worse with new technologies and data science. This will provide large opportunities for good and evil. A new approach able to adapt to the environment an order of magnitude faster than now would disorient political opponents (desperately scrolling through Twitter) to such a degree — in Boyd’s terms it would ‘collapse their OODA loops’ — that it could create crucial political space for focus on the extremely hard process of rewiring government institutions which now seems impossible for Insiders to focus on given their psychological/operational immersion in the hysteria of 24 hour rolling news and the constant crises generated by dysfunctional bureaucracies.
  • Explore how to re-program political/government institutions at the apex of decision-making authority so that a) people are more incentivised to optimise things we want them to optimise, like error-correction and predictive accuracy, and less incentivised to optimise bureaucratic process, prestige, and signalling as our institutions now do; b) institutions are incentivised to build high performance teams rather than make this practically illegal at the apex of government; and c) we have ‘immune systems’ based on decentralisation and distributed control to minimise the inevitable failures of even the best people and teams.

Example 1: Red Teams and pre-mortems can combat groupthink and normal cognitive biases but they are practically nowhere in the formal structure of governments. There is huge scope for a Parliament-mandated small and extremely elite Red Team operating next to, and in some senses above, the Cabinet Office to ensure diversity of opinions, fight groupthink and other standard biases, make sure lessons are learned and so on. Cost: a few million that it would recoup within weeks by stopping blunders.

Example 2: prediction tournaments/markets could improve policy and project management, with people able to ‘short’ official delivery timetables — imagine being able to short Grayling’s transport announcements, for example. In many areas new markets could help — e.g markets to allow shorting of house prices to dampen bubbles, as Chris Dillow and others have suggested. The way in which the IARPA/Tetlock work has been ignored in SW1 is proof that MPs and civil servants are not actually interested in — or incentivised to be interested in — who is right, who is actually an ‘expert’, and so on. There are tools available if new people do want to take these things seriously. Cost: a few million at most, possibly thousands, that it would recoup within a year by stopping blunders.

Example 3: we need to consider projects that could bootstrap new international institutions that help solve more general coordination problems such as the risk of accidental nuclear war. The most obvious example of a project like this I can think of is a manned international lunar base which would be useful for a) basic science, b) the practical purposes of building urgently needed near-Earth infrastructure for space industrialisation, and c) to force the creation of new practical international institutions for cooperation between Great Powers. George Mueller’s team that put man on the moon in 1969 developed a plan to do this that would have been built by now if their plans had not been tragically abandoned in the 1970s. Jeff Bezos is explicitly trying to revive the Mueller vision and Britain should be helping him do it much faster. The old institutions like the UN and EU — built on early 20th Century assumptions about the performance of centralised bureaucracies — are incapable of solving global coordination problems. It seems to me more likely that institutions with qualities we need are much more likely to emerge out of solving big problems than out of think tank papers about reforming existing institutions. Cost = 10s/100s of billions, return = trillions, or near infinite if shifting our industrial/psychological frontiers into space drastically reduces the chances of widespread destruction.

A) Some fields have fantastic predictive models and there is a huge amount of high quality research, though there is a lot of low-hanging fruit in bringing methods from one field to another.

B) We know a lot about high performance including ‘systems management’ for complex projects but very few organisations use this knowledge and government institutions overwhelmingly try to ignore and suppress the knowledge we have.

C) Some fields have amazing tools for prediction and visualisation but very few organisations use these tools and almost nobody in government (where colour photocopying is a major challenge).

D) We know a lot about successful communication but very few organisations use this knowledge and most base action on false ideas. E.g political parties spend millions on spreading ideas but almost nothing on thinking about whether the messages are psychologically compelling or their methods/distribution work, and TV companies spend billions on news but almost nothing understanding what science says about how to convey complex ideas — hence why you see massively overpaid presenters like Evan Davis babbling metaphors like ‘economic takeoff’ in front of an airport while his crew films a plane ‘taking off’, or ‘the economy down the plughole’ with pictures of — a plughole.

E) Many thousands worldwide are thinking about all sorts of big government issues but very few can bring them together into coherent plans that a government can deliver and there is almost no application of things like Red Teams and prediction markets. E.g it is impossible to describe the extent to which politicians in Britain do not even consider ‘the timetable and process for turning announcement X into reality’ as something to think about — for people like Cameron and Blair the announcement IS the only reality and ‘management’ is a dirty word for junior people to think about while they focus on ‘strategy’. As I have pointed out elsewhere, it is fascinating that elite business schools have been collecting billions in fees to teach their students WRONGLY that operational excellence is NOT a source of competitive advantage, so it is no surprise that politicians and bureaucrats get this wrong.

But I can see almost nobody integrating the very best knowledge we have about A+B+C+D with E and I strongly suspect there are trillion dollar bills lying on the ground that could be grabbed for trivial cost — trillion dollar bills that people with power are not thinking about and are incentivised not to think about. I might be wrong but I would remind readers that Vote Leave was itself a bet on this proposition being right and I think its success should make people update their beliefs on the competence of elite political institutions and the possibilities for improvement.

Here I want to explore one set of intersections — the ideas of Bret Victor and Michael Nielsen.

*

2. Bret Victor: Cognitive technologies, dynamic tools, interactive quantitative models, Seeing Rooms — making it as easy to insert facts, data, and models in political discussion as it is to insert emoji 

In the 1960s visionaries such as Joseph Licklider, Robert Taylor and Doug Engelbart developed a vision of networked interactive computing that provided the foundation not just for new technologies (the internet, PC etc) but for whole new industries. Licklider, Sutherland,Taylor et al provided a model (ARPA) for how science funding can work. Taylor provided a model (PARC) of how to manage a team of extremely talented people who turned a profound vision into reality. The original motivation for the vision of networked interactive computing was to help humans make good decisions in a complex world — or, ‘augmenting human intelligence’ and ‘man-machine symbiosis’. This story shows how to make big improvements in the world with very few resources if they are structured right: PARC involved ~25 key people and tens of millions over roughly a decade and generated trillions of dollars in value. If interested in the history and the super-productive processes behind the success of ARPA-PARC read THIS.

It’s fascinating that in many ways the original 1960s Licklider vision has still not been implemented. The Silicon Valley ecosystem developed parts of the vision but not others for complex reasons I don’t understand (cf. The Future of Programming). One of those who is trying to implement parts of the vision that have not been implemented is Bret Victor. Bret Victor is a rare thing: a genuine visionary in the computing world according to some of those ‘present at the creation’ of ARPA-PARC such as Alan Kay. His ideas lie at critical intersections between fields sketched above. Watch talks such as Inventing on Principle and Media for Thinking the Unthinkable and explore his current project, Dynamic Land in Berkeley.

Victor has described, and now demonstrates in Dynamic Land, how existing tools fail and what is possible. His core principle is that creators need an immediate connection to what they are creating. Current programming languages and tools are mostly based on very old ideas before computers even had screens and there was essentially no interactivity — they date from the era of punched cards. They do not allow users to interact dynamically. New dynamic tools enable us to think previously unthinkable thoughts and allow us to see and interact with complex systems: to see inside, see across time, and see across possibilities.

I strongly recommend spending a few days exploring his his whole website but I will summarise below his ideas on two things:

  1. His ideas about how to build new dynamic tools for working with data and interactive models.
  2. His ideas about transforming the physical spaces in which teams work so that dynamic tools are embedded in their environment — people work inside a tool.

Applying these ideas would radically improve how people make decisions in government and how the media reports politics/government.

Language and writing were cognitive technologies created thousands of years ago which enabled us to think previously unthinkable thoughts. Mathematical notation did the same over the past 1,000 years. For example, take a mathematics problem described by the 9th Century mathematician al-Khwarizmi (who gave us the word algorithm):

screenshot 2019-01-28 23.46.10

Once modern notation was invented, this could be written instead as:

x2 + 10x = 39

Michael Nielsen uses a similar analogy. Descartes and Fermat demonstrated that equations can be represented on a diagram and a diagram can be represented as an equation. This was a new cognitive technology, a new way of seeing and thinking: algebraic geometry. Changes to the ‘user interface’ of mathematics were critical to its evolution and allowed us to think unthinkable thoughts (Using Artificial Intelligence to Augment Human Intelligence, see below).

Screenshot 2019-03-06 11.33.19

Similarly in the 18th Century, there was the creation of data graphics to demonstrate trade figures. Before this, people could only read huge tables. This is the first data graphic:

screenshot 2019-01-29 00.28.21

The Jedi of data visualisation, Edward Tufte, describes this extraordinary graphic of Napoleon’s invasion of Russia as ‘probably the best statistical graphic ever drawn’. It shows the losses of Napoleon’s army: from the Polish-Russian border, the thick band shows the size of the army at each position, the path of Napoleon’s winter retreat from Moscow is shown by the dark lower band, which is tied to temperature and time scales (you can see some of the disastrous icy river crossings famously described by Tolstoy). NB. The Cabinet makes life-and-death decisions now with far inferior technology to this from the 19th Century (see below).

screenshot 2019-01-29 10.37.05

If we look at contemporary scientific papers they represent extremely compressed information conveyed through a very old fashioned medium, the scientific journal. Printed journals are centuries old but the ‘modern’ internet versions are usually similarly static. They do not show the behaviour of systems in a visual interactive way so we can see the connections between changing values in the models and changes in behaviour of the system. There is no immediate connection. Everything is pretty much the same as a paper and pencil version of a paper. In Media for Thinking the Unthinkable, Victor shows how dynamic tools can transform normal static representations so systems can be explored with immediate feedback. This dramatically shows how much more richly and deeply ideas can be explored. With Victor’s tools we can interact with the systems described and immediately grasp important ideas that are hidden in normal media.

Picture: the very dense writing of a famous paper (by chance the paper itself is at the intersection of politics/technology and Watts has written excellent stuff on fake news but has been ignored because it does not fit what ‘the educated’ want to believe)

screenshot 2019-01-29 10.55.01

Picture: the same information presented differently. Victor’s tools make the information less compressed so there’s less work for the brain to do ‘decompressing’. They not only provide visualisations but the little ‘sliders’ over the graphics are to drag buttons and interact with the data so you see the connection between changing data and changing model. A dynamic tool transforms a scientific paper from ‘pencil and paper’ technology to modern interactive technology.

screenshot 2019-01-29 10.58.38

Victor’s essay on climate change

Victor explains in detail how policy analysis and public debate of climate change could be transformed. Leave aside the subject matter — of course it’s extremely important, anybody interested in this issue will gain from reading the whole thing and it would be great material for a school to use for an integrated science / economics / programming / politics project, but my focus is on his ideas about tools and thinking, not the specific subject matter.

Climate change is a great example to consider because it involves a) a lot of deep scientific knowledge, b) complex computer modelling which is understood in detail by a tiny fraction of 1% (and almost none of the social science trained ‘experts’ who are largely responsible for interpreting such models for politicians/journalists, cf HERE for the science of this), c) many complex political, economic, cultural issues, d) very tricky questions about how policy is discussed in mainstream culture, and e) the problem of how governments try to think about and act on important, complex, and long-term problems. Scientific knowledge is crucial but it cannot by itself answer the question: what to do? The ideas BV describes to transform the debate on climate change apply generally to how we approach all important political issues.

In the section Languages for technical computing, BV describes his overall philosophy (if you look at the original you will see dynamic graphics to help make each point but I can’t make them play on my blog — a good example of the failure of normal tools!):

‘The goal of my own research has been tools where scientists see what they’re doing in realtime, with immediate visual feedback and interactive exploration. I deeply believe that a sea change in invention and discovery is possible, once technologists are working in environments designed around:

  • ubiquitous visualization and in-context manipulation of the system being studied;
  • actively exploring system behavior across multiple levels of abstraction in parallel;
  • visually investigating system behavior by transforming, measuring, searching, abstracting;
  • seeing the values of all system variables, all at once, in context;
  • dynamic notations that embed simulation, and show the effects of parameter changes;
  • visually improvising special-purpose dynamic visualizations as needed.’

He then describes how the community of programming language developers have failed to create appropriate languages for scientists, which I won’t go into but which is fascinating.

He then describes the problem of how someone can usefully get to grips with a complex policy area involving technological elements.

‘How can an eager technologist find their way to sub-problems within other people’s projects where they might have a relevant idea? How can they be exposed to process problems common across many projects?… She wishes she could simply click on “gas turbines”, and explore the space:

  • What are open problems in the field?
  • Who’s working on which projects?
  • What are the fringe ideas?
  • What are the process bottlenecks?
  • What dominates cost? What limits adoption?
  • Why make improvements here? How would the world benefit?

‘None of this information is at her fingertips. Most isn’t even openly available — companies boast about successes, not roadblocks. For each topic, she would have to spend weeks tracking down and meeting with industry insiders. What she’d like is a tool that lets her skim across entire fields, browsing problems and discovering where she could be most useful…

‘Suppose my friend uncovers an interesting problem in gas turbines, and comes up with an idea for an improvement. Now what?

  • Is the improvement significant?
  • Is the solution technically feasible?
  • How much would the solution cost to produce?
  • How much would it need to cost to be viable?
  • Who would use it? What are their needs?
  • What metrics are even relevant?

‘Again, none of this information is at her fingertips, or even accessible. She’d have to spend weeks doing an analysis, tracking down relevant data, getting price quotes, talking to industry insiders.

‘What she’d like are tools for quickly estimating the answers to these questions, so she can fluidly explore the space of possibilities and identify ideas that have some hope of being important, feasible, and viable.

‘Consider the Plethora on-demand manufacturing service, which shows the mechanical designer an instant price quote, directly inside the CAD software, as they design a part in real-time. In what other ways could inventors be given rapid feedback while exploring ideas?’

Victor then describes a public debate over a public policy. Ideas were put forward. Everybody argued.

‘Who to believe? The real question is — why are readers and decision-makers forced to “believe” anything at all? Many claims made during the debate offered no numbers to back them up. Claims with numbers rarely provided context to interpret those numbers. And never — never! — were readers shown the calculations behind any numbers. Readers had to make up their minds on the basis of hand-waving, rhetoric, bombast.’

And there was no progress because nobody could really learn from the debate or even just be clear about exactly what was being proposed. Sound familiar?!! This is absolutely normal and Victor’s description applies to over 99% of public policy debates.

Victor then describes how you can take the policy argument he had sketched and change its nature. Instead of discussing words and stories, DISCUSS INTERACTIVE MODELS. 

Here you need to click to the original to understand the power of what he is talking about as he programs a simple example.

‘The reader can explore alternative scenarios, understand the tradeoffs involved, and come to an informed conclusion about whether any such proposal could be a good decision.

‘This is possible because the author is not just publishing words. The author has provided a model — a set of formulas and algorithms that calculate the consequences of a given scenario… Notice how the model’s assumptions are clearly visible, and can even be adjusted by the reader.

‘Readers are thus encouraged to examine and critique the model. If they disagree, they can modify it into a competing model with their own preferred assumptions, and use it to argue for their position. Model-driven material can be used as grounds for an informed debate about assumptions and tradeoffs.

‘Modeling leads naturally from the particular to the general. Instead of seeing an individual proposal as “right or wrong”, “bad or good”, people can see it as one point in a large space of possibilities. By exploring the model, they come to understand the landscape of that space, and are in a position to invent better ideas for all the proposals to come. Model-driven material can serve as a kind of enhanced imagination.

Victor then looks at some standard materials from those encouraging people to take personal action on climate change and concludes:

‘These are lists of proverbs. Little action items, mostly dequantified, entirely decontextualized. How significant is it to “eat wisely” and “trim your waste”? How does it compare to other sources of harm? How does it fit into the big picture? How many people would have to participate in order for there to be appreciable impact? How do you know that these aren’t token actions to assauge guilt?

‘And why trust them? Their rhetoric is catchy, but so is the horrific “denialist” rhetoric from the Cato Institute and similar. When the discussion is at the level of “trust me, I’m a scientist” and “look at the poor polar bears”, it becomes a matter of emotional appeal and faith, a form of religion.

‘Climate change is too important for us to operate on faith. Citizens need and deserve reading material which shows context — how significant suggested actions are in the big picture — and which embeds models — formulas and algorithms which calculate that significance, for different scenarios, from primary-source data and explicit assumptions.’

Even the supposed ‘pros’ — Insiders at the top of research fields in politically relevant areas — have to scramble around typing words into search engines, crawling around government websites, and scrolling through PDFs. Reliable data takes ages to find. Reliable models are even harder to find. Vast amounts of useful data and models exist but they cannot be found and used effectively because we lack the tools.

‘Authoring tools designed for arguing from evidence’

Why don’t we conduct public debates in the way his toy example does with interactive models? Why aren’t paragraphs in supposedly serious online newspapers written like this? Partly because of the culture, including the education of those who run governments and media organisations, but also because the resources for creating this sort of material don’t exist.

‘In order for model-driven material to become the norm, authors will need data, models, tools, and standards…

‘Suppose there were good access to good data and good models. How would an author write a document incorporating them? Today, even the most modern writing tools are designed around typing in words, not facts. These tools are suitable for promoting preconceived ideas, but provide no help in ensuring that words reflect reality, or any plausible model of reality. They encourage authors to fool themselves, and fool others

‘Imagine an authoring tool designed for arguing from evidence. I don’t mean merely juxtaposing a document and reference material, but literally “autocompleting” sourced facts directly into the document. Perhaps the tool would have built-in connections to fact databases and model repositories, not unlike the built-in spelling dictionary. What if it were as easy to insert facts, data, and models as it is to insert emoji and cat photos?

‘Furthermore, the point of embedding a model is that the reader can explore scenarios within the context of the document. This requires tools for authoring “dynamic documents” — documents whose contents change as the reader explores the model. Such tools are pretty much non-existent.’

These sorts of tools for authoring dynamic documents should be seen as foundational technology like the integrated circuit or the internet.

‘Foundational technology appears essential only in retrospect. Looking forward, these things have the character of “unknown unknowns” — they are rarely sought out (or funded!) as a solution to any specific problem. They appear out of the blue, initially seem niche, and eventually become relevant to everything.

‘They may be hard to predict, but they have some common characteristics. One is that they scale well. Integrated circuits and the internet both scaled their “basic idea” from a dozen elements to a billion. Another is that they are purpose-agnostic. They are “material” or “infrastructure”, not applications.’

Victor ends with a very potent comment — that much of what we observe is ‘rearranging  app icons on the deck of the Titanic’. Commercial incentives drive people towards trying to create ‘the next Facebook’ — not fixing big social problems. I will address this below.

If you are an arts graduate interested in these subjects but not expert (like me), here is an example that will be more familiar… If you look at any big historical subject, such as ‘why/how did World War I start?’ and examine leading scholarship carefully, you will see that all the leading books on such subjects provide false chronologies and mix facts with errors such that it is impossible for a careful reader to be sure about crucial things. It is routine for famous historians to write that ‘X happened because Y’ when Y happened after X. Part of the problem is culture but this could potentially be improved by tools. A very crude example: why doesn’t Kindle make it possible for readers to log factual errors, with users’ reliability ranked by others, so authors can easily check potential errors and fix them in online versions of books? Even better, this could be part of a larger system to develop gold standard chronologies with each ‘fact’ linked to original sources and so on. This would improve the reliability of historical analysis and it would create an ‘anti-entropy’ ratchet — now, entropy means that errors spread across all books on a subject and there is no mechanism to reverse this…

 

‘Seeing Rooms’: macro-tools to help make decisions

Victor also discusses another fundamental issue: the rooms/spaces in which most modern work and thinking occurs are not well-suited to the problems being tackled and we could do much better. Victor is addressing advanced manufacturing and robotics but his argument applies just as powerfully, perhaps more powerfully, to government analysis and decision-making.

Now, ‘software based tools are trapped in tiny rectangles’. We have very sophisticated tools but they all sit on computer screens on desks, just as you are reading this blog.

In contrast, ‘Real-world tools are in rooms where workers think with their bodies.’ Traditional crafts occur in spatial environments designed for that purpose. Workers walk around, use their hands, and think spatially. ‘The room becomes a macro-tool they’re embedded inside, an extension of the body.’ These rooms act like tools to help them understand their problems in detail and make good decisions.

Picture: rooms designed for the problems being tackled

Screenshot 2017-03-20 14.29.19

The wave of 3D printing has developed ‘maker rooms’ and ‘Fab Labs’ where people work with a set of tools that are too expensive for an individual. The room is itself a network of tools. This approach is revolutionising manufacturing.

Why is this useful?

‘Modern projects have complex behavior… Understanding requires seeing and the best seeing tools are rooms.’ This is obviously particularly true of politics and government.

Here is a photo of a recent NASA mission control room. The room is set up so that all relevant people can see relevant data and models at different scales and preserve a common picture of what is important. NASA pioneered thinking about such rooms and the technology and tools needed in the 1960s.

Screenshot 2017-03-20 14.35.35

Here are pictures of two control rooms for power grids.

Screenshot 2017-03-20 14.37.28

Here is a panoramic photo of the unified control centre for the Large Hadron Collider – the biggest of ‘big data’ projects. Notice details like how they have removed all pillars so nothing interrupts visual communication between teams.

Screenshot 2017-03-20 15.31.33

Now contrast these rooms with rooms from politics.

Here is the Cabinet room. I have been in this room. There are effectively no tools. In the 19th Century at least Lord Salisbury used the fireplace as a tool. He would walk around the table, gather sensitive papers, and burn them at the end of meetings. The fire is now blocked. The only other tool, the clock, did not work when I was last there. Over a century, the physical space in which politicians make decisions affecting potentially billions of lives has deteriorated.

British Cabinet room practically as it was July 1914

Screenshot 2017-03-20 15.42.59

Here are JFK and EXCOM making decisions during the Cuban Missile Crisis that moved much faster than July 1914, compressing decisions leading to the destruction of global civilisation potentially into just minutes.

Screenshot 2019-02-14 16.06.04

Here is the only photo in the public domain of the room known as ‘COBRA’ (Cabinet Office Briefing Room) where a shifting set of characters at the apex of power in Britain meet to discuss crises.

Screenshot 2017-03-20 14.39.41

Notice how poor it is compared to NASA, the LHC etc. There has clearly been no attempt to learn from our best examples about how to use the room as a tool. The screens at the end are a late add-on to a room that is essentially indistinguishable from the room in which Prime Minister Asquith sat in July 1914 while doodling notes to his girlfriend as he got bored. I would be surprised if the video technology used is as good as what is commercially available cheaper, the justification will be ‘security’, and I would bet that many of the decisions about the operation of this room would not survive scrutiny from experts in how to construct such rooms.

I have not attended a COBRA meeting but I’ve spoken to many who have. The meetings, as you would expect looking at this room, are often normal political meetings. That is:

  • aims are unclear,
  • assumptions are not made explicit,
  • there is no use of advanced tools,
  • there is no use of quantitative models,
  • discussions are often dominated by lawyers so many actions are deemed ‘unlawful’ without proper scrutiny (and this device is routinely used by officials to stop discussion of options they dislike for non-legal reasons),
  • there is constant confusion between policy, politics and PR then the cast disperses without clarity about what was discussed and agreed.

Here is a photo of the American equivalent – the Situation Room.

Screenshot 2017-03-20 15.51.12.png

It has a few more screens but the picture is essentially the same: there are no interactive tools beyond the ability to speak and see someone at a distance which was invented back in the 1950s/1960s in the pioneering programs of SAGE (automated air defence) and Apollo (man on the moon). Tools to help thinking in powerful ways are not taken seriously. It is largely the same, and decisions are made the same, as in the Cuban Missile Crisis. In some ways the use of technology now makes management worse as it encourages Presidents and their staff to try to micromanage things they should not be managing, often in response to or fear of the media.

Individual ministers’ officers are also hopeless. The computers are old and rubbish. Even colour printing is often a battle. Walls are for kids’ pictures. In the DfE officials resented even giving us paper maps of where schools were and only did it when bullied by the private office. It was impossible for officials to work on interactive documents. They had no technology even for sharing documents in a way that was then (2011) normal even in low-performing organisations. Using GoogleDocs was ‘against the rules’. (I’m told this has slightly improved.) The whole structure of ‘submissions’ and ‘red boxes’ is hopeless. It is extremely bureaucratic and slow. It prevents serious analysis of quantitative models. It reinforces the lack of proper scientific thinking in policy analysis. It guarantees confusion as ministers scribble notes and private offices interpret rushed comments by exhausted ministers after dinner instead of having proper face-to-face meetings that get to the heart of problems and resolve conflicts quickly. The whole approach reinforces the abject failure of the senior civil service to think about high performance project management.

Of course, most of the problems with the standards of policy and management in the civil service are low or no-tech problems — they involve the ‘unrecognised simplicities’ that are independent of, and prior to, the use of technology — but all these things negatively reinforce each other. Anybody who wants to do things much better is scuppered by Whitehall’s entangled disaster zone of personnel, training, management, incentives and tools.

*

Dynamic Land: ‘amazing’

I won’t go into this in detail. Dynamic Land is in a building in Berkeley. I visited last year. It is Victor’s attempt to turn the ideas above into a sort of living laboratory. It is a large connected set of rooms that have computing embedded in surfaces. For example, you can scribble equations on a bit of paper, cameras in the ceiling read your scribbles automatically, turn them into code, and execute them — for example, by producing graphics. You can then physically interact with models that appear on the table or wall while the cameras watch your hands and instantly turn gestures into new code and change the graphics or whatever you are doing. Victor has put these cutting edge tools into a space and made it open to the Berkeley community. This is all hard to explain/understand because you haven’t seen anything like it even in sci-fi films (it’s telling the media still uses the 15 year-old Minority Report as its sci-fi illustration for such things).

This video gives a little taste. I visited with a physicist who works on the cutting edge of data science/AI. I was amazed but I know nothing about such things — I was interested to see his reaction as he scribbled gravitational equations on paper and watched the cameras turn them into models on the table in real-time, then he changed parameters and watched the graphics change in real-time on the table (projected from the ceiling): ‘Ohmygod, this is just obviously the future, absolutely amazing.’ The thought immediately struck us: imagine the implications of having policy discussions with such tools instead of the usual terrible meetings. Imagine discussing HS2 budgets or possible post-Brexit trading arrangements with the models running like this for decision-makers to interact with.

Video of Dynamic Land: the bits of coloured paper are ‘code’, graphics are projected from the ceiling

 

screenshot 2019-01-29 15.01.20

screenshot 2019-01-29 15.27.05

*

3. Michael Nielsen and cognitive technologies

Connected to Victor’s ideas are those of the brilliant physicist, Michael Nielsen. Nielsen wrote the textbook on quantum computation and a great book, Reinventing Discovery, on the evolution of the scientific method. For example, instead of waiting for the coincidence of Grossmann helping out Einstein with some crucial maths, new tools could create a sort of ‘designed serendipity’ to help potential collaborators find each other.

In his essay Thought as a Technology, Nielsen describes the feedback between thought and interfaces:

‘In extreme cases, to use such an interface is to enter a new world, containing objects and actions unlike any you’ve previously seen. At first these elements seem strange. But as they become familiar, you internalize the elements of this world. Eventually, you become fluent, discovering powerful and surprising idioms, emergent patterns hidden within the interface. You begin to think with the interface, learning patterns of thought that would formerly have seemed strange, but which become second nature. The interface begins to disappear, becoming part of your consciousness. You have been, in some measure, transformed.’

He describes how normal language and computer interfaces are cognitive technologies:

‘Language is an example of a cognitive technology: an external artifact, designed by humans, which can be internalized, and used as a substrate for cognition. That technology is made up of many individual pieces – words and phrases, in the case of language – which become basic elements of cognition. These elements of cognition are things we can think with…

‘In a similar way to language, maps etc, a computer interface can be a cognitive technology. To master an interface requires internalizing the objects and operations in the interface; they become elements of cognition. A sufficiently imaginative interface designer can invent entirely new elements of cognition… In general, what makes an interface transformational is when it introduces new elements of cognition that enable new modes of thought. More concretely, such an interface makes it easy to have insights or make discoveries that were formerly difficult or impossible. At the highest level, it will enable discoveries (or other forms of creativity) that go beyond all previous human achievement.’

Nielsen describes how powerful ways of thinking among mathematicians and physicists are hidden from view and not part of textbooks and normal teaching.

The reason is that traditional media are poorly adapted to working with such representations… If experts often develop their own representations, why do they sometimes not share those representations? To answer that question, suppose you think hard about a subject for several years… Eventually you push up against the limits of existing representations. If you’re strongly motivated – perhaps by the desire to solve a research problem – you may begin inventing new representations, to provide insights difficult through conventional means. You are effectively acting as your own interface designer. But the new representations you develop may be held entirely in your mind, and so are not constrained by traditional static media forms. Or even if based on static media, they may break social norms about what is an “acceptable” argument. Whatever the reason, they may be difficult to communicate using traditional media. And so they remain private, or are only discussed informally with expert colleagues.’

If we can create interfaces that reify deep principles, then ‘mastering the subject begins to coincide with mastering the interface.’ He gives the example of Photoshop which builds in many deep principles of image manipulation.

‘As you master interface elements such as layers, the clone stamp, and brushes, you’re well along the way to becoming an expert in image manipulation… By contrast, the interface to Microsoft Word contains few deep principles about writing, and as a result it is possible to master Word‘s interface without becoming a passable writer. This isn’t so much a criticism of Word, as it is a reflection of the fact that we have relatively few really strong and precise ideas about how to write well.’

He then describes what he calls ‘the cognitive outsourcing model’: ‘we specify a problem, send it to our device, which solves the problem, perhaps in a way we-the-user don’t understand, and sends back a solution.’ E.g we ask Google a question and Google sends us an answer.

This is how most of us think about the idea of augmenting the human intellect but it is not the best approach. ‘Rather than just solving problems expressed in terms we already understand, the goal is to change the thoughts we can think.’

‘One challenge in such work is that the outcomes are so difficult to imagine. What new elements of cognition can we invent? How will they affect the way human beings think? We cannot know until they’ve been invented.

‘As an analogy, compare today’s attempts to go to Mars with the exploration of the oceans during the great age of discovery. These appear similar, but while going to Mars is a specific, concrete goal, the seafarers of the 15th through 18th centuries didn’t know what they would find. They set out in flimsy boats, with vague plans, hoping to find something worth the risks. In that sense, it was even more difficult than today’s attempts on Mars.

‘Something similar is going on with intelligence augmentation. There are many worthwhile goals in technology, with very specific ends in mind. Things like artificial intelligence and life extension are solid, concrete goals. By contrast, new elements of cognition are harder to imagine, and seem vague by comparison. By definition, they’re ways of thinking which haven’t yet been invented. There’s no omniscient problem-solving box or life-extension pill to imagine. We cannot say a priori what new elements of cognition will look like, or what they will bring. But what we can do is ask good questions, and explore boldly.

In another essay, Using Artificial Intelligence to Augment Human Intelligence, Nielsen points out that breakthroughs in creating powerful new cognitive technologies such as musical notation or Descartes’ invention of algebraic geometry are rare but ‘modern computers are a meta-medium enabling the rapid invention of many new cognitive technologies‘ and, further, AI will help us ‘invent new cognitive technologies which transform the way we think.’

Further, historically powerful new cognitive technologies, such as ‘Feynman diagrams’, have often appeared strange at first. We should not assume that new interfaces should be ‘user friendly’. Powerful interfaces that repay mastery may require sacrifices.

‘The purpose of the best interfaces isn’t to be user-friendly in some shallow sense. It’s to be user-friendly in a much stronger sense, reifying deep principles about the world, making them the working conditions in which users live and create. At that point what once appeared strange can instead becomes comfortable and familiar, part of the pattern of thought…

‘Unfortunately, many in the AI community greatly underestimate the depth of interface design, often regarding it as a simple problem, mostly about making things pretty or easy-to-use. In this view, interface design is a problem to be handed off to others, while the hard work is to train some machine learning system.

‘This view is incorrect. At its deepest, interface design means developing the fundamental primitives human beings think and create with. This is a problem whose intellectual genesis goes back to the inventors of the alphabet, of cartography, and of musical notation, as well as modern giants such as Descartes, Playfair, Feynman, Engelbart, and Kay. It is one of the hardest, most important and most fundamental problems humanity grapples with.

‘As discussed earlier, in one common view of AI our computers will continue to get better at solving problems, but human beings will remain largely unchanged. In a second common view, human beings will be modified at the hardware level, perhaps directly through neural interfaces, or indirectly through whole brain emulation.

We’ve described a third view, in which AIs actually change humanity, helping us invent new cognitive technologies, which expand the range of human thought. Perhaps one day those cognitive technologies will, in turn, speed up the development of AI, in a virtuous feedback cycle:

Screenshot 2019-02-04 18.16.42

It would not be a Singularity in machines. Rather, it would be a Singularity in humanity’s range of thought… The long-term test of success will be the development of tools which are widely used by creators. Are artists using these tools to develop remarkable new styles? Are scientists in other fields using them to develop understanding in ways not otherwise possible?’

I would add: are governments using these tools to help them think in ways we already know are more powerful and to explore new ways of making decisions and shaping the complex systems on which we rely?

Nielsen also wrote this fascinating essay ‘Augmenting long-term memory’. This involves a computer tool (Anki) to aid long-term memory using ‘spaced repetition’ — i.e testing yourself at intervals which is shown to counter the normal (for most people) process of forgetting. This allows humans to turn memory into a choice so we can decide what to remember and achieve it systematically (without a ‘weird/extreme gift’ which is how memory is normally treated). (It’s fascinating that educated Greeks 2,500 years ago could build sophisticated mnemonic systems allowing them to remember vast amounts while almost all educated people now have no idea about such techniques.)

Connected to this, Nielsen also recently wrote an essay teaching fundamentals of quantum mechanics and quantum computers — but it is an essay with a twist:

‘[It] incorporates new user interface ideas to help you remember what you read… this essay isn’t just a conventional essay, it’s also a new medium, a mnemonic medium which integrates spaced-repetition testing. The medium itself makes memory a choice This essay will likely take you an hour or two to read. In a conventional essay, you’d forget most of what you learned over the next few weeks, perhaps retaining a handful of ideas. But with spaced-repetition testing built into the medium, a small additional commitment of time means you will remember all the core material of the essay. Doing this won’t be difficult, it will be easier than the initial read. Furthermore, you’ll be able to read other material which builds on these ideas; it will open up an entire world…

‘Mastering new subjects requires internalizing the basic terminology and ideas of the subject. The mnemonic medium should radically speed up this memory step, converting it from a challenging obstruction into a routine step. Frankly, I believe it would accelerate human progress if all the deepest ideas of our civilization were available in a form like this.’

This obviously has very important implications for education policy. It also shows how computers could be used to improve learning — something that has generally been a failure since the great hopes at PARC in the 1970s. I have used Anki since reading Nielsen’s blog and I can feel it making a big difference to my mind/thoughts — how often is this true of things you read? DOWNLOAD ANKI NOW AND USE IT!

We need similarly creative experiments with new mediums that are designed to improve  standards of high stakes decision-making.

*

4. Summary

We could create systems for those making decisions about m/billions of lives and b/trillions of dollars, such as Downing Street or The White House, that integrate inter alia:

  • Cognitive toolkits compressing already existing useful knowledge such as checklists for rational thinking developed by the likes of Tetlock, Munger, Yudkowsky et al.
  • A Nielsen/Victor research program on ‘Seeing Rooms’, interface design, authoring tools, and cognitive technologies. Start with bunging a few million to Victor immediately in return for allowing some people to study what he is doing and apply it in Whitehall, then grow from there.
  • An alpha data science/AI operation — tapping into the world’s best minds including having someone like David Deutsch or Tim Gowers as a sort of ‘chief rationalist’ in the Cabinet (with Scott Alexander as deputy!) — to support rational decision-making where this is possible and explain when it is not possible (just as useful).
  • Tetlock/Hanson prediction tournaments could easily and cheaply be extended to consider ‘clusters’ of issues around themes like Brexit to improve policy and project management.
  • Groves/Mueller style ‘systems management’ integrated with the data science team.
  • Legally entrenched Red Teams where incentives are aligned to overcoming groupthink and error-correction of the most powerful. Warren Buffett points out that public companies considering an acquisition should employ a Red Team whose fees are dependent on the deal NOT going ahead. This is the sort of idea we need in No10.

Researchers could see the real operating environment of decision-makers at the apex of power, the sort of problems they need to solve under pressure, and the constraints of existing centralised systems. They could start with the safe level of ‘tools that we already know work really well’ — i.e things like cognitive toolkits and Red Teams — while experimenting with new tools and new ways of thinking.

Hedge funds like Bridgewater and some other interesting organisations think about such ideas though without the sophistication of Victor’s approach. The world of MPs, officials, the Institute for Government (a cheerleader for ‘carry on failing’), and pundits will not engage with these ideas if left to their own devices.

This is not the place to go into how to change this. We know that the normal approach is doomed to produce the normal results and normal results applied to things like repeated WMD crises means disaster sooner or later. As Buffett points out, ‘If there is only one chance in thirty of an event occurring in a given year, the likelihood of it occurring at least once in a century is 96.6%.’ It is not necessary to hope in order to persevere: optimism of the will, pessimism of the intellect…

*

A final thought…

A very interesting comment that I have heard from some of the most important scientists involved in the creation of advanced technologies is that ‘artists see things first’ — that is, artists glimpse possibilities before most technologists and long before most businessmen and politicians.

Pixar came from a weird combination of George Lucas getting divorced and the visionary Alan Kay suggesting to Steve Jobs that he buy a tiny special effects unit from Lucas, which Jobs did with completely wrong expectations about what would happen. For unexpected reasons this tiny unit turned into a huge success — as Jobs put it later, he was ‘sort of snookered’ into creating Pixar. Now Alan Kay says he struggles to get tech billionaires to understand the importance of Victor’s ideas.

The same story repeats: genuinely new ideas that could create huge value always seem so odd that almost all people in almost all organisations cannot see new possibilities. If this is true in Silicon Valley, how much more true is it in Whitehall or Washington… 

If one were setting up a new party in Britain, one could incorporate some of these ideas. This would of course also require recruiting very different types of people to the norm in politics. The closed nature of Westminster/Whitehall combined with first-past-the-post means it is very hard to solve the coordination problem of how to break into this system with a new way of doing things. Even those interested in principle don’t want to commit to a 10-year (?) project that might get them blasted on the front pages. Vote Leave hacked the referendum but such opportunities are much rarer than VC-funded ‘unicorns’. On the other hand, arguably what is happening now is a once in 50 or 100 year crisis and such crises also are the waves that can be ridden to change things normally unchangeable. A second referendum in 2020 is quite possible (or two referendums under PM Corbyn, propped up by the SNP?) and might be the ideal launchpad for a completely new sort of entity, not least because if it happens the Conservative Party may well not exist in any meaningful sense (whether there is or isn’t another referendum). It’s very hard to create a wave and it’s much easier to ride one. It’s more likely in a few years you will see some of the above ideas in novels or movies or video games than in government — their pickup in places like hedge funds and intelligence services will be discrete — but you never know…

*

Ps. While I have talked to Michael Nielsen and Bret Victor about their ideas, in no way should this blog be taken as their involvement in anything to do with my ideas or plans or agreement with anything written above. I did not show this to them or even tell them I was writing about their work, we do not work together in any way, I have just read and listened to their work over a few years and thought about how their ideas could improve government.

Further Reading

If interested in how to make things work much better, read this (lessons for government from the Apollo project) and this (lessons for government from ARPA-PARC’s creation of the internet and PC).

Links to recent reports on AI/ML.

#29 On the referendum & #4c on Expertise: On the ARPA/PARC ‘Dream Machine’, science funding, high performance, and UK national strategy

Post-Brexit Britain should be considering the intersection of 1) ARPA/PARC-style science research and ‘systems management’ for managing complex projects with 2) the reform of government institutions so that high performance teams — with different education/training (‘Tetlock processes’) and tools (including data science and visualisations of interactive models of complex systems) — can make ‘better decisions in a complex world’.  

This paper examines the ARPA/PARC vision for computing and the nature of the two organisations. In the 1960s visionaries such as Joseph Licklider, Robert Taylor and Doug Engelbart developed a vision of networked interactive computing that provided the foundation not just for new technologies but for whole new industries. Licklider, Sutherland, Taylor et al provided a model (ARPA) for how science funding can work. Taylor provided a model (PARC) of how to manage a team of extremely talented people who turned a profound vision into reality. The original motivation for the vision of networked interactive computing was to help humans make good decisions in a complex world.

This story suggests ideas about how to make big improvements in the world with very few resources if they are structured right. From a British perspective it also suggests ideas about what post-Brexit Britain should do to help itself and the world and how it might be possible to force some sort of ‘phase transition’ on the rotten Westminster/Whitehall system.

For the PDF of the paper click HERE. Please correct errors with page numbers below. I will update it after feedback.

Further Reading

The Dream Machine.

Dealers of Lightning.

‘Sketchpad: A man-machine graphical communication system’, Ivan Sutherland 1963.

Oral history interview with Sutherland, head of ARPA’s IPTO division 1963-5.

This link has these seminal papers:

  • Man-Computer Symbiosis, Licklider (1960)
  • The computer as a communications device, Licklider & Taylor (1968)

Watch Alan Kay explain how to invent the future to YCombinator classes HERE and HERE.  

HERE for Kay quotes from emails with Bret Victor.

HERE for Kay’s paper on PARC, The Power of the Context.

Kay’s Early History of Smalltalk.

HERE for a conversation between Kay and Engelbart.

Alan Kay’s tribute to Ted Nelson at “Intertwingled” Fest (an Alto using Smalltalk).

Personal Distributed Computing: The Alto and Ethernet Software1, Butler Lampson. 

You and Your Research, Richard Hamming.

AI nationalism, essay by Ian Hogarth. This concerns implications of AI for geopolitics.

Drones go to work, Chris Anderson (one of the pioneers of commercial drones). This explains the economics of the drone industry.

Meditations on Moloch, Scott Alexander. This is an extremely good essay in general about deep problems with our institutions.

Intelligence Explosion Microeconomics, Yudkowsky.

Autonomous technology and the greater human good. Omohundro.

Can intelligence explode? Hutter.

For the issue of IQ, genetics and the distribution of talent (and much much more), cf. Steve Hsu’s brilliant blog.

Bret Victor.

Michael Nielsen.

For some pre-history on computers, cf. The birth of computational thinking (some of the history of computing devices before the Turing/von Neumann revolution) and The crisis of mathematical paradoxes, Gödel, Turing and the basis of computing (some of the history of ideas about mathematical foundations and logic such as the famous papers by Gödel and Turing in the 1930s)

Part I of this series of blogs is HERE.

Part II on the emergence of ‘systems management’, how George Mueller used it to put man on the moon, and a checklist of how successful management of complex projects is systematically different to how Whitehall works is HERE.

Review of Allison’s book on US/China & nuclear destruction, and some connected thoughts on technology, the EU, and space

‘The combination of physics and politics could render the surface of the earth uninhabitable… [Technological progress] gives the appearance of approaching some essential singularity in the history of the race beyond which human affairs, as we have known them, cannot continue.’ John von Neumann, one of the 20th Century’s most important mathematicians, one of the two most responsible for developing digital computers, central to Manhattan Project etc.

‘Politics is always like visiting a country one does not know with people whom one does not know and whose reactions one cannot predict. When one person puts a hand in his pocket, the other person is already drawing his gun, and when he pulls the trigger the first one fires and it is too late then to ask whether the requirements of common law with regard to self-defence apply, and since common law is not effective in politics people are very, very quick to adopt an aggressive defence.’ Bismarck, 1879.

*

Below is a review of Graham Allison’s book, Destined for War: Can America and China Escape Thucydides’s Trap?. Allison’s book is particularly interesting given what is happening with North Korea and Trump. It is partly about the most urgent question: whether and how humanity can survive the collision between science and politics.

Beneath the review are a few other thoughts on the book and its themes. I will also post some notes on stuff connecting ideas about advanced technology and strategy (conventional and nuclear) including notes from the single best book on nuclear strategy, Payne’s The Great American Gamble: deterrence theory and practice from the Cold War to the twenty-first century. If you want to devote your life to a cause with maximum impact, then studying this book is a good start and it also connects to debates on other potential existential threats such as biological engineering and AI.

Payne’s book connects directly to Allison’s. Allison focuses a lot on the circumstances in which crises could spin out of control and end in US-China war. Payne’s book is the definitive account of nuclear strategy and its intellectual and practical problems. Payne’s book in a nutshell: 1) politicians and most senior officials operate with the belief that there is a dependable ‘rational’ basis for successful deterrence in which ‘rational’ US opponents will respond prudently and cautiously to US nuclear deterrence threats; 2) the re-evaluation of nuclear strategy in expert circles since the Cold War exposes the deep flaws of Cold War thinking in general and the concept of ‘rational’ deterrence in particular (partly because strategy was dangerously influenced by ideas about rationality from economics). Expert debate has not permeated to most of those responsible or the media. Trump’s language over North Korea and the media debate about it are stuck in the language of Cold War deterrence.

I would bet that no UK Defence Secretary has read Payne’s book. (Have the MoD PermSecs? The era of Michael Quinlan has long gone as the Iraq inquiries revealed.) What emerges from UK Ministers suggests they are operating with Cold War illusions. If you think I’m probably too pessimistic, then ponder this comment by Professor Allison who has spent half a century in these circles: ‘Over the past decade, I have yet to meet a senior member of the US national security team who had so much as read the official national security strategies’ (emphasis added). NB. he is referring to reading the official strategies, not the explanations of why they are partly flawed!

This of course relates to the theme of much I have written: the dangers created by the collision of science and markets with dysfunctional individuals and political institutions, and the way the political-media system actively suppresses thinking about, and focus on, what’s important.

Priorities are fundamental to politics because of inevitable information bottlenecks: these bottlenecks can be transformed by rare good organisation but they cannot be eradicated. People are always asking ‘how could the politicians let X happen with Y?’ where Y is something important. People find it hard to believe that Y is not the focus of  serious attention and therefore things like X are bound to happen all the time. People like Osborne and Clegg are focused on some magazine profile, not Y. The subject of nuclear command and control ought to make people realise that their mental models for politics are deeply wrong. It is beyond doubt that politicians do not even take the question of accidental nuclear war seriously, so a fortiori there is no reason to have confidence in their general approach to priorities.

If you think of politics as ‘serious people focusing seriously on the most important questions’, which is the default mode of most educated people and the media (but not the less-educated public which has better instincts), then your model of reality is badly wrong. A more accurate model is: politics is a system that 1) selects against skills needed for rigorous thinking and for qualities such as groupthink and confirmation bias, 2) incentivises a badly selected set of people to consider their career not the public interest, 3) drops them into dysfunctional institutions with no relevant training and poor tools, 4) centralises vast amounts of power in the hands of these people and institutions in ways we know are bound to cause huge errors, and 5) provides very weak (and often damaging) feedback so facing reality is rare, learning is practically impossible, and system reform is seen as a hostile act by political parties and civil services worldwide.

I meant to publish this a few days ago on ‘Petrov day’, the anniversary of 26 September 1983 when Petrov saw US nuclear missiles heading for Russia on his screen but in a snap decision without consultation he decided not to inform his superiors, guessing it was some sort of technical error and not wanting to risk catastrophic escalation. (Petrov died a few weeks ago.) I forgot to post but my point is: we will not keep getting lucky like that, and our odds worsen with every week that the political system works as it does. The cumulative probability of disaster grows alarmingly even if you assume a small chance of disaster. For example, a 1% chance of wipeout per year means the probability of wipeout is about 20% within 20 years, about 50% within 70 years, and about two-thirds within a century. Given what we now know it’s reasonable to plan on the basis that the chance of a nuclear accident of some sort leading to mass destruction is at least 1% per year. A 1:30 chance per year means a ~97% chance of wipeout in a century…

*

Review of Destined for War: Can America and China Escape Thucydides’s Trap?, by Graham Allison

Every day on his way to work at Harvard, Professor Allison wondered how the reconstruction of the bridge over Boston’s Charles River could take years while in China bigger bridges are replaced in days. His book tells the extraordinary story of China’s transformation since Deng abandoned Mao’s catastrophic Stalinism, and considers whether the story will end in war between China and America.

China erects skyscrapers in weeks while Parliament delays Heathrow expansion for over a decade. The EU discusses dumb rules made 60 years ago while China produces a Greece-sized economy every 16 weeks. China’s economy doubles roughly every seven years; it is already the size of America’s and will likely dwarf it in 20 years. More serious than Europe, it invests this growth in education and technology from genetic engineering to artificial intelligence.

Allison analyses the formidable President Xi, who has known real suffering and is very different to western leaders obsessed with the frivolous spin cycles of domestic politics. Xi’s goal is to ensure that China’s renaissance returns it to its position as the richest, strongest and most advanced culture on earth. Allison asks: will the US-China relationship repeat the dynamics between Athens and Sparta that led to war in 431 bc or might it resemble the story of the British-American alliance in the 20th century?

In Thucydides’ history the dynamic growth of Athens caused such fear that, amid confusing signals in an escalating crisis, Sparta gambled on preventive war. Similarly, after Bismarck unified Germany in 1870-71, Europe’s balance of power was upended. In summer 1914, the leaderships of all Great Powers were overwhelmed by confusing signals amid a rapidly escalating crisis. The prime minister doodled love letters to his girlfriend as the cabinet discussed Ireland, and European civilisation tottered over the brink.

Allison discusses how America, China and Taiwan [or Korea] might play the roles of Britain, Germany and Belgium. China has invested in weapons with powerful asymmetric advantages: cheap missiles can sink an aircraft carrier costing billions, and cyber weapons could negate America’s powerful space and communication infrastructure. American war-games often involve bombing Chinese coastal installations. How far might it escalate?

Nuclear weapons increase destructive power a million-fold and give a leader just minutes to decide whether a (possibly false) warning justifies firing weapons that would destroy civilisation, while relying on the same sort of hierarchical decision-making processes that failed in the much slower 1914 crisis.

Terrifying near misses have already happened, and we have been saved by individuals’ snap judgments. They have occurred, luckily, during episodes of relative calm. Similar incidents during an intense crisis could spark catastrophe. The Pentagon hoped that technology would bring ‘information dominance’: instead, technology accelerates crises and overwhelms decisions. Real and virtual robots will fight battles and influence minds faster than traditional institutions can follow.

Allison hopes Washington will rediscover its 1940s seriousness, when it built a strategy and institutions to contain Stalin. He suggests abandoning ‘containment’, which is unlikely to work in the same way against capitalist China as it did against Soviet Russia. It could drop security guarantees to Taiwan to lower escalation risks. It could promote new institutions to tackle destructive technology and terrorism. Since China will upend post-1945 institutions anyway, why not try to shape what comes next together? Perhaps, channelling Sun Tzu, the West could avoid defeat by not trying to ‘win’.

It is hard to see how the necessary leadership might emerge.

We need government teams capable of the rare high performance we see in George Mueller’s Nasa, which put man on the moon; or in Silicon Valley, entrepreneurs such as Sam Altman and Patrick Collison. This means senior politicians and officials of singular ability and with different education, training and experience. It means extremely adaptive institutions and state-of-the-art tools, not the cabinet processes that failed in 1914. It means breaking the power of self-absorbed parties and bureaucracies that evolved before nuclear physics and the internet.

New leaders must build institutions for global cooperation that can transcend Thucydides’ dynamics. For example, the plan of Jeff Bezos, Amazon’s CEO, to build a permanent moon base in which countries work together to harness the resources of the solar system is the sort of project that could create an alternative focus to nationalist antagonism.

The scale of change seems impossible, yet technology gives us no choice — we must try to escape our evolutionary origins, since we cannot survive repeated roulette with advanced technology. Churchill wrote how in 1914 governments drifted into ‘fathomless catastrophe’ in ‘a kind of dull cataleptic trance’. Western leaders are in another such trance. Unless new forces evolve outside closed political systems and force change we will suffer greater catastrophe; it’s just a matter of when.

I hope people like Jeff Bezos read this timely book and resolve to build the political forces we need.

(Originally appeared in The Spectator.)

*

A few other thoughts

I’ve got some quibbles, such as interpretations of Thucydides, but I won’t go into those.

There are many issues in it I did not have time to mention in a short review…

1. Nuclear crises / accidents

In the context of US-China crises, it is very instructive to consider some of the most dangerous episodes of the Cold War that remained secret at the time.

Here are some of the near misses that have been declassified (see this timeline from Future of Life Institute).

  • 24 January 1961. A US bomber broke up and dropped two hydrogen bombs on North Carolina. Five of six safety devices failed. ‘By the slightest margin of chance, literally the failure of two wires to cross, a nuclear explosion was averted’ (Defence Secretary Robert McNamara).
  • 25 October 1962, during the Cuban Missile Crisis. A sabotage alarm was triggered at a US base. Faulty wiring meant that the alarm triggered the take-off of nuclear armed US planes. Fortunately they made contact with the ground and were stood down. The alarm had been triggered by a bear — yes, a bear, like in a Simpsons episode — pottering around outside the base. This was one of many incidents during this crisis, including one base where missiles and codes were mishandled such that a single person could have launched.
  • 27 October 1962, during the Cuban Missile Crisis. A Soviet submarine was armed with nuclear weapons. It was cornered by US ships which dropped depth charges. It had no contact with Moscow for days and had no idea if war had already broken out. Malfunctioning systems meant carbon dioxide poisoning and crew were fainting. In panic the captain ordered a nuclear missile fired. Orders said that three officers had to agree. Only two did. Vasili Arkhipov said No. It was not known until after the collapse of the Soviet Union that there were also tactical nuclear missiles deployed to Cuba and, for the only time, under direct authority of field commanders who could fire without further authority from Moscow, so if the US had decided to attack Cuba, as many urged JFK to do, there is a reasonable chance that local commanders would have begun a nuclear exchange. Castro wanted these missiles, unknown to America, transferred to Cuban control. Fortunately, Mikoyan, the Soviet in charge on the ground, witnessed Castro’s unstable character and decided not to transfer these missiles to his control. The missiles were secretly returned to Russia shortly after.
  • 1 August 1974. A warning of the danger of allowing one person to give a catastrophic order: Nixon was depressed, drinking heavily, and unstable so Defense Secretary Schlesinger told the Joint Chiefs to come to him in the event of any order to fire nuclear weapons.
  • 9 November 1979. NORAD thought there was a large-scale Soviet nuclear attack. Planes were scrambled and ICBM crews put on highest alert. The National Security Adviser was called at home. He looked at his wife asleep and decided not to wake her as they would shortly both be dead and he turned his mind to calling President Carter about plans for massive retaliation before he died. After 6 minutes no satellite data confirmed launches. Decisions were delayed. It turned out that a technician had accidentally input a training program which played through the computer system as if it were a real attack. (There were other similar incidents.)
  • 26 September 1983. A month after the Soviet Union shot down a Korean passenger jet and at a time of international tension, a Soviet satellite showed America had launched five nuclear missiles. The data suggested the satellite was working properly but the officer on duty, Stanilov Petrov, decided to report it to his superiors as a false alarm without knowing if it was true. It turned out to be an odd effect of sun glinting off clouds that fooled the system.
  • 2-11 November 1983. NATO ran a large wargame with a simulation of DEFCON 1 and coordinated attack on the Soviet Union. The war-game was so realistic that Soviet intelligence thought it was a cover for a real attack and Soviet missiles were placed on high alert. On 11 November the Soviets intercepted a message saying US missiles had launched. Fortunately, incidents such as 26 September 1983 did not randomly occur during this 10 days.
  • 25 January 1995. The Russian system detected the launch of a missile off the coast of Norway that was thought to be a US submarine launch. The warning went to Yeltsin who activated his ‘nuclear football’ and retrieved launch codes. There was no corroboration from satellites. Norway had actually reached a scientific rocket and somehow this was not notified properly in Russia.
  • 29-30 August 2007. Six US nuclear weapons were accidentally loaded into a B52 which was left unguarded overnight, flown to another base where it was left unguarded for another nine hours before ground crew realised what they were looking at. For 36 hours nobody realised the missiles were missing.
  • 23 October 2010. The US command and control system responsible for detecting and stopping unauthorised launches lost all control of 50 ICBMs for an hour because of communication failure caused by a dodgy component.
  • A 2013 monitoring exercise found the US nuclear command and control system generally shambolic. Staff were found to be on drugs and otherwise unsuitable, the system was deemed unfit to cope with a major hack, and the commander of the ICBM force was compromised by a classic KGB ‘honey trap’ (when I lived in Moscow I met some of the women who worked on such operations and I’d bet >90% of male UK Ministers/PermSecs would throw themselves at them faster than you can say ‘honey trap’).

This is just a sample. The full list still understates the scale of luck we have had in at least two ways. First, the data is mostly from America because America is a more open society. The most sensible assumption is that there have been more incidents in Russia than we know about. Second, there is a selection bias towards older incidents that have been declassified.

Right now there are hundreds of missiles on ‘hair-trigger’ alert for launch within minutes. Decisions about how reliable a warning is and whether to fire must all be taken within minutes. This makes the whole world vulnerable to accidents, unauthorised use, unhinged leaders, and false alarms. This situation could get worse. China’s missiles are not on hair-trigger alert but the Chinese military is pushing to change this. Adding a third country operating like this would make the system even more unstable. It also seems very likely that proliferation will continue to spread. The West preaches non-proliferation at non-nuclear countries but this unsurprisingly is not persuasive.

2. China’s weaknesses, including the tension between informational openness needed for growth and its political dangers

During the Cold War, many people from different political perspectives were agreed on one thing: that the Soviet Union was much stronger than it later turned out to have been. This view was so powerful that people like Andy Marshall, the founder and multi-decade head of the Office of Net Assessment, struggled to find support for his argument that the CIA and Pentagon were systematically overstating the strength of the Soviet economy and understating the burden of defence spending. They had, of course, strong bureaucratic reasons to do so: a more dangerous enemy was the best argument for more funding. It is important to keep in mind this potential error viz China.

1929 and 2008 each had profound effects on US politics. China, interestingly, was not as badly hit by 2008 as the West. What is the probability that it will continue to avoid an economic crisis somewhere between a serious recession and a 1929/2008-style event over the next say 20 years? If it does experience such a shock, how effective will its political institutions be in coping relative to those of America’s and Britain’s over the long-term? Might debt and bad financial institutions create a political crisis serious enough to threaten the legitimacy of the regime? Might other problems such as secession movements (perhaps combined with terrorism) cause an equivalently serious political crisis? After all, historically the country has fallen apart repeatedly and this is the great fear of its leaders.

China also has serious resource vulnerabilities. It has to import most of its energy. It has serious water shortages. It has serious ecological crises. It has serious corruption problems. It has a rapidly ageing population. Although it, unlike the EU, has built brilliant private companies to rival Google et al, its state-owned enterprises (with special phones on CEO desks for Communist Party instructions) control gigantic resources and are not run as well as Google or Alibaba. There has been significant emigration of educated Chinese particularly to America where they buy houses and educate their children (Xi himself quietly sent a daughter to Harvard). Many of these tensions result in occasional public outcries that the regime carefully appeases. These problems are not trivial to solve even for very competent people who don’t have to worry about elections.

In terms of the risks of war and escalation over flashpoints like Korea or Taiwan, major internal crises like a financial crash might easily make it more likely that an external crisis escalates out of control. When regimes face crises of legitimacy they often, for obvious evolutionary reasons, resort to picking fights with out-groups to divert people. Much of Germany’s military-industrial elite saw nationalist diversions as crucial to escape the terrifying spread of socialism before 1914.

I’m ignorant about all these dynamics in China but if forced to bet I would bet that Allison underplays these weaknesses and I would bet against another 20 years of straight line growth. In the spirit of Tetlock, I’ll put a number on it and say a 80% probability of a bad recession or some other internal crisis within 20 years that is bad enough to be considered ‘the worst domestic crisis for the leadership since Tiananmen and a prelude to major political change’ and which results in either a Tiananmen-style clampdown or big political change. (I have not formulated this well, suggestions from Superforecasters welcome in comments.)

Part of my reason for thinking China will not be able to avoid such crises is a fundamental dynamic that Fukuyama discussed in his much-misunderstood ‘The End of History’: economic development requires openness and the protection of individual rights in various dimensions, and this creates an inescapable tension between an elite desire for economic dynamism and technological progress viz competitor Powers, and an elite fear of openness and what it brings politically/culturally.

The KGB and Soviet military realised this in the late 1970s as they watched the microelectronics revolution in America but they could never develop a response that worked: they were very successful at stealing stuff but they could not develop domestic companies because of the political constraints, as Marshall Ogarkov admitted (off-the-record!) to the New York Times in 1983. China watched the Soviet Union implode and chose a different path: economic liberalisation combined with greater economic and information rights, but no Gorbachev-style political opening up. This caution has worked so far but does not solve the problem.

Singapore and China could not develop economically as they have without also allowing much greater individual freedom in some domains than Soviet Russia. Developing hi-tech businesses cannot be done without a degree of openness to the rest of the world that is politically risky for China. If there is too much arbitrary seizure of property, as in the KGB-mafia state of Russia, then people will focus on theft and moving assets offshore rather than building long-term value. Chinese entrepreneurs have to be able to download software, read scientific and technical papers, and access most of the internet if they are not to be seriously disadvantaged. China knows that its path to greatness must include continued growth and greater productivity. If it does not, then like other oligarchies it will rapidly lose legitimacy and risks collapse. This is inconsistent with all-out repression. It will therefore have to tread a fine line of allowing social unhappiness to be expressed and adapting to it without letting it spin out of control. Given social movements are inherently complex and nonlinear, plus social media already seethes with unhappiness in China, there will be a constant danger that this dynamic tension breaks free of centralised control.

This is, obviously, one of the many reasons why the leadership is so interested in advanced technology and particularly AI. Such tools may help the leadership tread this tightrope without tumbling off, though maintaining a culture at the edge-of-the-art in technologies like AI simultaneously exacerbates the very turbulence that the AI needs to monitor — there are many tricky feedback loops to navigate and many reasons to suspect that eventually the centralised leadership will blunder, be overwhelmed, collapse internally and so on. Can China’s leaders maintain this dynamic tension for another 20 years? As Andy Grove always said, only the paranoid survive…

3. Contrast between the EU and China

High-tech breakthroughs are increasingly focused in North East America (around Harvard), West Coast America (around Stanford), and coastal China (e.g Shenzhen). When the UK leaves the EU, the EU will have zero universities in the global top 20. EU politicians are much more interested in vindictive legal action against Silicon Valley giants than asking themselves why Europe cannot match America or China. On issues such as CRISPR and genetic engineering the EU is regulating itself out of the competition and many businesspeople are unaware that this will get much worse once the ECJ starts using the Charter of Fundamental Rights to seize control of such regulation for itself, which will mean not just more anti-science regulation but also damaging uncertainty as scientists and companies face the ECJ suddenly pulling a human rights ‘top trump’ out of the deck whenever they fancy (one of the many arguments Vote Leave made during the referendum that we could not get the media to report, partly because of persistent confusion between the COFR and the ECHR). Organisations like YCombinator provide a welcoming environment for talented and dynamic young Europeans in California while the EU’s regulatory structure is dominated by massive incumbent multinationals like Goldman Sachs that use the Single Market to crush startup competitors.

If you watch this documentary on Shenzhen, you will see parts of China with the same or even greater dynamism than Silicon Valley and far, far beyond the EU. The contrast between the reality of Shenzhen and the rhetoric of blowhards like Macron is one of the reasons why many massive institutional investors do not share CBI-style conventional wisdom on Brexit. The young vote with their feet. If they want to be involved in world-leading projects, they head to coastal China or coastal America, few go to Paris, Rome, or Berlin. The Commission publishes figures on this but never faces the logic.

Chart: notice how irrelevant the EU is

Screenshot 2017-09-28 16.42.08

We are escaping the Single Market / ECJ / Charter of Fundamental Rights quagmire that will deepen the EU’s stagnation (despite Whitehall’s best efforts to scupper the referendum). The UK should now be thinking about how we provide the most dynamic environment in Europe for scientists and entrepreneurs. After 50 years of wasting time in dusty meeting rooms failing to ‘influence’ the EU to ditch its Monnet-Delors plan, we could start building things with real value and thereby acquire real, rather than the Foreign Office’s chimerical, influence. Let Macron et al continue with the same antiquated rhetoric: we know what will happen, we’ve seen it since all the pro-euro forces in the UK babbled about the ‘Lisbon Agenda’ in 2000 — rhetoric about ‘reform’ always turns into just more centralisation in Brussels institutions, it does not produce dynamic forces that create breakthroughs and real value. Economic, technological, and political power will continue to shift away from an EU that cannot and will not adapt to the forces changing the world: its legal model of Single Market plus ECJ make fast adaptation impossible. We will soon be out of Monnet’s house and Whitehall’s comfortable delusions (‘special relationship’, ‘punching above our weight’) will fade. Contra the EU’s logic, in a world increasingly defined by information and computation the winning asset is not size — it is institutional adaptability.

Those on the pro-EU side who disagree with this analysis have to face a fact: people like Mandelson, Adair Turner, the FT, and the Economist have been repeatedly wrong in their predictions for 20 years about ‘EU reform’, and people like me who have made the same arguments for 20 years, and called bullshit on ‘EU reform’, have been repeatedly vindicated by actual EU Treaties, growth rates, unemployment trends, euro crises and so on. (The Commission itself doesn’t even produce fake reports showing big gains from the Single Market, the gains it claims are relatively trivial even if you believe them.) What is happening in the EU now to suggest to reasonable observers that this will change over the next 20 years? Every sign from Juncker to Macron is that yet again Brussels will double down on Monnet’s mid-20th Century vision and the entire institutional weight of the Commission and legal system exerts an inescapable gravitational pull that way.

4. ‘Anti-access / area denial’ (A2/AD)

One aspect of China’s huge conventional buildup is what is known as A2/AD: i.e building forces to prevent America intervening near China, using missiles, submarines, cyber, anti-space and other weapons. The US response is known as ‘AirSea Battle’.

I won’t go into this here but it is an interesting topic that is also relevant to UK defence debates. The transformation of US forces goes back to a mid-1970s DARPA project known as Assault Breaker that began a series of breakthroughs in ‘precision strike’ where computerised command and control combined with sensors, radar, GPS and so on to provide the capability for precise conventional strike. The first public demo of all this was the famous films in the first Gulf War of bombs dropping down chimneys. This development was central to the last phase of the Cold War and the intolerable pressure put on Soviet defence expenditure. Soviets led the thinking but could not build the technology.

One of the consequences of these developments is that aircraft carriers are no longer safe from cheap missiles. I started making these arguments in 2004 when it was already clear that the UK Ministry of Defence carrier project was a disaster. Since then it has been a multi-billion pound case study in Whitehall incompetence, the MoD’s appalling ‘planning’ system and corrupt procurement, and Westminster’s systemic inability to think about complex long-term issues. Talking to someone at the MoD last year they said that in NATO wargames the UK carriers immediately bug out for the edge of the game to avoid being sunk. Of course they do. Carriers cannot be deployed against top tier forces because of the vast and increasing asymmetry between their cost and vulnerability to cheap sinking. Soon they will not be deployable even against Third World forces because of the combination of cheap cruise missiles and exponential price collapse and performance improvement of guidance systems (piggybacking the commercial drone industry). Soon an intelligent terrorist with a cruise missile and some off-the-shelf kit will be able to sink a carrier using their iPhone: see this blog for details. The MoD has lied and bluffed about all this for 20 years, this Government will continue the trend, and the appalling BAE will continue to scam billions from taxpayers unbothered by MPs.

5. Strategy, Sun Tzu and Bismarck: Great Powers and ‘the passions of sheep stealers’

China is the home of Sun Tzu. His most famous advice was that ‘winning without fighting is the highest form of warfare’ — advice often quoted but rarely internalised by those responsible for vital decisions in conflicts. This requires what Sun Tzu called ‘Cheng/Ch’i’ operations. You pull the opponent off balance with a series of disorienting moves, feints, bluffs, carrots, and sticks (e.g ‘where strong appear weak’). You disorient them with speed so they make blunders that undermine their own moral credibility with potential allies. You try to make the opponent look like an unreasonable aggressor. You isolate them, you break their alliances and morale. Where possible you collapse their strategy and will to fight instead of wasting resources on an actual battle. And so on…

Looking at the US-China relationship through the lens of ‘winning without fighting’ and nuclear risk suggests that the way for America to ‘win’ this Thucydidean struggle is: ‘don’t try to win in a conventional sense, but instead redefine winning’. Given the unlimited downside of nuclear war and what we now know about the near-disasters of Cold War brinkmanship, it certainly suggests focus on the goal of avoiding escalating crises involving nuclear weapons, and this goal has vast consequences for America’s whole approach to China.

Allison’s ideas about how the US might change strategy are interesting though I think his ‘academic’ approach is too rigid. Allison suggests distinct strategies as distinct choices. If one looks at the world champion of politics and diplomacy in the modern world, Bismarck, his approach was the opposite of ‘pick a strategy’ in the sense Allison means. Over 27 years he was close to and hostile to all the other Powers at different times, sometimes in such rapid succession that his opponents felt badly disoriented as though they were dealing with ‘the devil himself’, as many said.

Bismarck contained an extremely tyrannical ego and an even more extreme epistemological caution about the unpredictability of a complex world and a demonic practical adaptability. He knew events could suddenly throw his calculations into chaos. He was always ready to ditch his own ideas and commitments that suddenly seemed shaky. He was interested in winning, not consistency. He had a small number of fundamental goals — such as strengthening the monarchy’s power against Parliament and strengthening Prussia as a serious Great Power — which he pursued with constantly changing tactics. He was always feinting and fluid, pushing one line openly and others privately, pushing and pulling the other Powers in endless different combinations. He was the Grand Master of Cheng/Ch’i operations.

I think that if Bismarck read Allison’s book, he would not ‘pick a strategy’. He would use many of the different elements Allison sketches (and invent others) at the same time while watching China’s evolution and the success of different individuals/factions in the governing elite. For example, he would both suggest a bargain over dropping security guarantees for Taiwan and launch a covert (apparently domestic) cyber campaign to spread details of the Chinese leadership’s wealth and corruption all over the internet inside ‘the Great Firewall’. Carrot and stick, threaten and cajole, pull the opponent off balance.

I think that Bismarck’s advice would be: get what you can from dropping the Taiwanese guarantees and do not create nuclear tripwires in Korea. He was contemptuous of any argument that he ought to care about the Balkans for its own sake and repeatedly stressed that Germany should not fight for Austrian interests in the Balkans despite their alliance. He often repeated variations on his famous line — that the whole of the Balkans was not worth the bones of a single Pomeranian grenadier. Great Powers, he warned, should not let their fates be tied to ‘the passions of sheep stealers’. On another occasion: ‘All Turkey, including the various people who live there, is not worth so much that civilised European peoples should destroy themselves in great wars for its sake.’ At the Congress of Berlin, he made clear his priority: ‘We are not here to consider the happiness of the Bulgarians but to secure the peace of Europe.’ A decade later he warned other Powers not to ‘play Pericles beyond the confines of the area allocated by God’ and said clearly: ‘Bulgaria … is far from being an object of adequate importance … for which to plunge Europe from Moscow to the Pyrenees, and from the North Sea to Palermo, into a war whose issue no man can foresee. At the end of the conflict we should scarcely know why we had fought.’

In order to avoid a Great Power war he stressed the need to stay friendly with Russia, and the importance of being able to play Russia and Austria off against each other, France, and Britain: ‘The security of our relations with the Austro-Hungarian state depends to a great extent on our being able, should Austria make unreasonable demands on us, to come to terms with Russia as well.’ This was the logic behind his infamous secret Reinsurance Treaty in which, unknown to Austria with which he already had an alliance, Germany and Russia made promises to each other about their conduct in the event of war breaking out in different scenarios, the heart of which was Bismarck promising to stay out of a Russia-Austria war if Austria was the aggressor. In 1887 when military factions rumbled about a preventive war against Russia to help Austria in the Balkans he squashed the notion flat: ‘They want to urge me into war and I want peace. It would be frivolous to start a new war; we are not a pirate state which makes war because it suits a few.’ Preventive war, he said, was an egg from which very dangerous chicks would hatch.

His successors ditched his approach, ditched the Reinsurance Treaty, pushed Russia towards France, and made growing commitments to support Austria in the Balkans. This series of errors (combined with Wilhelm II’s appalling combination of vanity, aggression, and indolence which is echoed in a frightening proportion of leading politicians today) exploded in summer 1914.

Would Bismarck tie the probability of nuclear holocaust to the possibilities for extremely fast-moving crises in the South China Seas and ‘the passions of sheep stealers’ in places like North Korea? No chance.

Instead of taking the lead on Korea, I suspect Bismarck’s approach would be to go quiet publicly other than to suggest that China has a clear responsibility for Kim’s behaviour while perhaps leaking a ‘secret’ study on the consequences of Japan going nuclear, to focus minds in Beijing. Regardless of whose ‘fault’ it is, if the situation spirals out of control and ends with North Korea, perhaps because of collapsed command and control empowering some mentally ill / on drugs local commander (America has had plenty of those in charge of nukes) killing millions of Koreans and America destroying North Korea, who thinks this would be seen as a ‘win’ for America? Trump’s threats are straight out of the Cold War playbook but we know that playbook was dodgy even against the relative ‘rationality’ of people like Brezhnev and Andropov, never mind nutjobs like Kim…

So: avoid nuclear crises. Therefore do not give local security ties to Taiwan and Korea that could trigger disaster. What positive agenda can be pushed?

America should seek cooperation in areas of deep significance and moral force where institutions can be shaped that align orientation over decades. Three obvious areas are: disaster response in Asia (naval cooperation), WMD terrorism (intel cooperation), and space. China already has an aggressive space program. It has demonstrated edge-of-the-art capabilities in developing a satellite-based quantum communication network, a revolutionary goal with even deeper effects than GPS. It will go to the moon. The Cold War got humans onto the moon then perceived superiority ended American politicians’ ambition. Instead of rebooting a Cold War style rivalry, it would be better to try to do things together. One of the most important projects humans can pursue is — as Jeff Bezos has argued and committed billions to — to use the resources of space (which are approximately ALL resources in the solar system) to alleviate earth’s problems, and the logic of energy and population growth is to shift towards heavy manufacturing in space while Earth is ‘zoned residential and light industrial’. Building the infrastructure to allow such ambition for humanity is inherently a project of great moral force that encourages international friendship and provides an invaluable perspective: a tiny blue dot friendly to life surrounded by vast indifferent blackness. People can be proud of their nation’s contributions and proud of a global effort. (As I have said before, contributing to this should be one of the UK’s priorities post-Brexit — how much more real value we could create with this than we have in 50 years with the EU, and developing the basic and applied research for robotics would have crossover applications both with commercial autonomous vehicles and the military sphere.)

Of course, there must be limits to friendly cooperation. What if China takes this as weakness and increasingly exerts more and more power, direct and indirect, over her neighbours? This is obviously possible. But I think the Bismarck/Sun Tzu response would be: if that is how she will behave driven by internal dynamics, then let her behave like that, as that will do more than anything you can do to persuade those neighbours to try to contain China. Trying to contain China now won’t work and would be seen not just in China but elsewhere as classic aggression from an imperial power. China is neither like Hitler’s Germany nor Stalin’s Soviet Union and treating it as such is bound to provoke intense and dangerous resentment among a billion people who suffered appallingly for decades under Mao. But if America backs off and makes clear that she prefers cooperation to containment, and then over time China seeks to threaten and dominate Japan, Australia and others, then that is the time to start building alliances because that is when you will have moral authority with local forces — the vital element.

A Bismarckian approach would also, obviously, involve ensuring that America remains technologically ahead of China, though this is a much more formidable task than it was with Russia and that was seen for a while (after Sputnik) as an existential challenge (and famous economists like Paul Samuelson continued to predict wrongly that the Soviet economy would overtake America’s). Attempting to escape Thucydides means trying to build institutions and feelings of cooperation but it also requires that militaristic Chinese don’t come to see America as vulnerable to pre-emptive strikes. As AI, biological engineering, digital fabrication and so on accelerate, there may soon be non-nuclear dangers at least as frightening as nuclear dangers.

Finally, there is an interesting question of self-awareness. American leaders have a tendency to talk about American interests as if they are self-evidently humanity’s interests. Others find this amusing or enraging. Its leaders need a different language for discussing China if they are to avoid Thucydides.

Talented political leaders sometimes show an odd empathy for the psychology of opposing out-groups. Perhaps it’s a product of a sort of ‘complementarity’ ability, an ability to hold contradictory ideas in one’s head simultaneously. It is often a shock for students when they read in Pericles’s speech that he confronted the plague-struck Athenians with the sort of uncomfortable truth that democratic politicians rarely speak:

‘You have an empire to lose, and there is the danger to which the hatred of your imperial rule has exposed you… For by this time your empire has become a tyranny which in the opinion of mankind may have been unjustly gained, but which cannot be safely surrendered… To be hateful and offensive has ever been the fate of those who have aspired to empire.’ Thucydides, 2.63-4, emphasis added.

Bismarck too didn’t fool himself about how others saw him, his political allies, and his country. He much preferred boozing with revolutionary communists than reactionaries on his own side. When various commercial interests tried to get him to support them in China, he told the English Ambassador crossly:

‘These blackguard Hamburg and Lubeck merchants have no other idea of policy in China but to, what they call ‘shoot down those damned niggers of Chinese’ for six months and then dictate peace to them etc. Now, I believe those Chinese are better Christians than our vile mercantile snobs and wish for peace with us and are not thinking of war, and I’ll see the merchants and their Yankee and French allies damned before I consent to go to war with China to fill their pockets with money.’

There are powerful interests urging Washington to aggression against China. The nexus of commercial and military interests is always dangerous, as Eisenhower famously warned in his Farewell Speech. They will be more dangerous as jobs continue to shift East driven by markets and technology regardless of Trump’s promises. The Pentagon will overhype Chinese aggression to justify their budgets, as they did with Russia.

Bismarck was a monster and the world would have been better if one of the assassination attempts had succeeded (see HERE for other branching histories) but he also understood fundamental questions better than others. Those responsible for policy on China should study his advice. They should also study summer 1914 and ponder how those responsible for war and peace still make these decisions in much the same way as then, while the crises are 1,000 times faster and a million times more potentially destructive.

Such problems require embedding lessons from effective institutions into our systematically flawed political institutions. I describe in detail the systems management approach to complex projects developed in the 1950s and 1960s that is far more advanced than anything in Whitehall today and which is part of necessary reforms (see HERE, p.26ff for summary of lessons). I will blog on other ideas. Unless we find a way to build political institutions that produce much more reliable decisions from the raw material of unreliable humans the law of averages means we are sure to fall off our tightrope, and unlike in 1918 or 1945 we won’t have anything to clamber back on to…